揭阳市晟源美佳环保有限公司 土壤和地下水自行监测报告

建设单位: 揭阳市晟源美佳环保有限公司

编制单位:广东源生态环保工程有限公司

编制日期:二〇二三年七月

目 录

目 录	2
第一章 概述	1
1.1 项目背景	1
1.2 调查目的和原则	1
1.3 编制依据	2
第二章 重点单位概况	6
2.1 资料收集	6
2.2 现场踏勘	25
2.3 人员访谈	30
第三章 自行监测方案	31
3.1 重点监测单元识别	31
3.2 监测布点	32
3.2 监测布点样品采集	36
3.3 监测因子	42
第四章 现场采样和实验室分析	45
4.1 现场布点及点位调整情况	45
4.2 土孔钻探与土壤采样	45
4.3 监测井安装与地下水采样	53
4.4 样品保存	64
4.5 样品流转	64
4.6 实验室分析测试	65
4.7 质量保证及控制质量	69
第五章 监测结果与评价	76
5.1 土壤自行监测结果分析	76
5.2 地下水自行监测结果分析	83
第六章 结论和建议	88
6.1 结论	.110
6.2 建议	.110
6.3 不确定性因素分析	111
第七章 监测报告编制	112
第八章 信息公开	113
第九章 健康和安全防护计划	114
9.1 地块安全风险识别	114
9.2 地块安全保障与风险防控措施	114
附件	. 116

第一章 概述

1.1 项目背景

揭阳市晟源美佳环保有限公司成立于 2019 年,注册资本 500 万元,公司位于揭阳市揭东区玉滘镇东径路尾欧晟电厂东侧,中心位置坐标:北纬 23°39′23.646″,东经 116°29′53.780″。公司主要处理生活垃圾焚烧后的炉渣,属于 N7723 固体废物治理。2022 年 3 月委托广东源生态环保工程有限公司编制了《揭阳市晟源美佳环保有限公司日处理 700 吨炉渣建设项目环境影响报告表》,该项目于 2022 年 4 月 28 日取得揭阳市生态环境局揭东分局的审批意见(揭市环(揭东)审[2022]21号),并于 2022 年 9 月 11 日组织专家、对该项目进行自主验收。同意该项目环保设施投入使用。企业规模为日处理炉渣 700 吨,占地面积 8000㎡,建筑面积 3675㎡。

揭阳市晟源美佳环保有限公司已列入《揭阳市2023年土壤污染重点监管单位名单》,属于土壤污染重点监管企业。为贯彻落实《中华人民共和国土壤污染防治法》、《土壤污染防治行动计划》和《工矿用地土壤环境管理办法(试行)》的要求,需开展土壤和地下水污染隐患排查,识别可能造成土壤和地下水污染的污染物、设施设备和生产活动,并排查企业生产活动土壤和地下水污染隐患,制定整改方案,及时采取技术、管理措施消除隐患,建立土壤和地下水污染自行监测方案,组织开展土壤和地下水自行监测。

受揭阳市晟源美佳环保有限公司委托,广东源生态环保工程有限公司开展对该 揭阳市晟源美佳环保有限公司土壤和地下水自行监测工作,编制《揭阳市晟源美佳 环保有限公司土壤和地下水自行监测方案》。根据《工业企业土壤和地下水自行监 测技术指南(试行)》(HJ1209-2021)的相关要求,2023年6月3日广东源生态环 保工程有限公司派人员前往现场进行资料收集和现场踏勘后,编制完成《揭阳市晟 源美佳环保有限公司土壤和地下水自行监测方案》,根据监测方案要求,委托广东 信一检测技术股份有限公司开展土壤和地下水污染自行监测工作,并编制形成报告。

1.2 调查目的和原则

1.2.1 调查目的

本地块土壤和地下水自行监测目的如下:

- 1、为落实《中华人民共和国土壤污染防治法》《工矿用地土壤环境管理办法(试行)》、《关于加强土壤污染重点监管单位监管工作的通知》和揭阳市生态环境局的相关环境保护管理要求;
- 2、为加强揭阳市晟源美佳环保有限公司土壤和地下水的管理,判断企业存在的土壤和地下水污染隐患风险,识别可能造成土壤和地下水污染的污染物、设施设备和生产活动,有助于土壤污染重点监管单位及时发现污染隐患,制定整改方案,及时采取技术、管理措施消除隐患,防止本企业生产经营过程对土壤和地下水造成的污染;
 - 3、为后续地块环境管理提供依据。

1.2.2 调查意义

《土壤污染防治行动计划》(国发〔2016〕31号)中提出: "应加强污染源日常环境监管,做好土壤污染预防工作。各地要根据工矿企业分布和污染排放情况,确定土壤环境重点监管企业名单,实行动态更新,并向社会公布。列入名单的企业每年要自行对其用地进行土壤环境监测,结果向社会公开。有关环境保护部门要定期对重点监管企业和工业园区周边开展监测,数据及时上传全国土壤环境信息化管理平台,结果作为环境执法和风险预警的重要依据。"

《土壤污染防治行动计划》的出台,明确了企业对于土壤环境保护的主体责任,促使企业加强内部管理,将土壤污染防治纳入环境风险防控体系,严格依法依规建设和运营污染治理设施,确保重点污染物稳定达标排放。对列入土壤环境重点监管名单的企业依据《土壤污染防治行动计划》的要求,开展土壤及地下水定期监测工作,及时监控企业生产过程对土壤和地下水影响的动态变化,最大程度的降低在产企业环境污染隐患。

因此, 开展企业用地土壤环境监测作为土壤污染环境风险防控的首要环节, 对及时发现潜在污染因素, 保障土壤及地下水质量安全具有重要意义。

按照《在产企业土壤及地下水自行监测技术指南(征求意见稿)》 的要求,揭阳市晟源美佳环保有限公司自行监测原则如下:

(1)针对性原则:针对企业内土壤污染特征和潜在污染物特征,进行污染浓度和空间分布的初步调查,为企业土壤的环境管理以及下一步可能需要的企业土壤环境调查工作提供依据。

- (2) 规范性原则:参考目前国家建设用地土壤污染状况调查的相关技术规范,对土壤的采样、样品保存运输、样品分析等一系列过程进行严格的控制,保证调查过程的科学性、准确性和客观性。
- (3)可操作性原则:综合考虑企业用地历史、现状及调查方法、时间、经费等,结合现阶段企业用地实际情况,使调查监测过程有序进行。

1.3 编制依据

1.3.1 法律法规

- (1) 《中华人民共和国环境保护法》(2014年4月24日修订,自2015年1月1日起施行);
- (2) 《中华人民共和国固体废物污染环境防治法》(2020年4月29日修订, 2020年9月1日起施行);
- (3)《中华人民共和国土壤污染防治法》(2018年8月31日通过,2019年1月1日起施行):
 - (4)《土壤污染防治行动计划》(自2016年5月28日起实施);
- (5)《工矿用地土壤环境管理办法(试行)》(2018年5月3日生态环境部令第3号公布,自2018年8月1日起施行);
- (6) 《中华人民共和国水污染防治法》(2017年6月27修订,自2018年1月1日起施行):
 - (7) 《关于加强土壤污染防治工作的意见》 (环发[2008]48 号);
- (8)《国务院关于印发土壤污染防治行动计划的通知》(国发[2016]31号,2016年5月28日发布);
- (9)《国务院关于印发水污染防治行动计划的通知》(国发[2015]17号,2015年4月2日发布);
- (10)《中华人民共和国生态环境部关于进一步稳妥推进重点行业企业用地土壤污染状况调查工作的通知》(环办土壤函〔2019〕81号);
- (11)《污染地块土壤环境管理办法(试行)》(部令第 42 号、2017 年 7 月 1 日起施行);
 - (12) 《关于加强重金属污染防治工作的指导意见》,环保部等七部委,2009

年

- (13) 广东省生态环境厅关于《进一步加强土壤污染重点监管单位环境管理的通知》粤环发〔2021〕8号;
- (14) 揭阳市生态环境局关于印发《揭阳市 2020 年土壤污染防治工作方案》的通知:
 - (15) 《揭阳市 2023 年土壤污染重点监管单位名录》。

1.3.2 导则规范

- (1) 《土壤环境监测技术规范》(HJ/T 166-2004);
- (2) 《地下水环境监测技术规范》(HJ/T164-2004);
- (3)《工业企业场地环境调查评估及修复工作指南(试行)》(中国环境保护部 2014.11):
 - (4) 《工业固体废物采样制样技术规范》(HJ/T 20-1998);
 - (5)《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018);
- (6)《重点行业企业用地调查疑似污染地块布点技术规定(试行)》(中国环境保护部 2017.8.15);
- (7)《重点行业企业用地调查样品采集保存和流转技术规定(试行)》(中国环境保护部 2017.8.15);
 - (8) 《建设用地土壤环境调查评估技术指南》环境保护部 2017.12.15;
- (9)《重点监管单位土壤污染隐患排查指南(试行)》(生态环境部公告 2021 年 第1号):
 - (10)《在产企业土壤及地下水自行监测技术指南(征求意见稿)》;
 - (11) 《建设用地土壤污染状况调查技术导则》(HJ 25.1-2019);
 - (12) 《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25.2-2019);
 - (13) 《地下水环境监测技术规范》(HJ 164-2020);
- (14)《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB 36600-2018);
 - (15) 《地下水质量标准》(GB/T 14848-2017);
 - (16) 《排污单位自行监测技术指南一总则》(HJ819-2017);
 - (17)《工业企业土壤和地下水自行监测技术指南(试行)》(HJ1209-2021);
 - (18) 揭阳市生态环境局《关于印发揭阳市 2023 年环境监管重点单位名录的通

知》(揭市环〔2023〕65号);。

1.3.3 企业技术资料

- (1) 《揭阳市晟源美佳环保有限公司环境影响报告表》,2022年3月;
- (2)《揭阳市生态环境局关于揭阳市晟源美佳环保有限公司日处理 700 吨炉渣建设项目环境影响报告表审批意见的函》,揭市环(揭东)审[2022]21号;
- (3)《揭阳市晟源美佳环保有限公司土壤和地下水自行监测方案》,2023年5月。

第二章 重点单位概况

2.1 资料收集

根据《工业企业土壤和地下水自行监测 技术指南(试行)》搜集的资料主要包括企业基本信息、生产信息、水文地质信息、生态环境管理信息等。

2.1.1 企业基础信息

企业名称: 揭阳市晟源美佳环保有限公司;

统一社会信用代码: 91445200MA534H6J0F;

注册住所: 揭阳市揭东区玉滘镇东径路尾欧晟电厂东侧:

企业类型: 其他有限责任公司;

法定代表人: 阮蔚锥:

注册资本: 500 万元:

经营范围:生活垃圾焚烧发电、新型墙体材料的产品生产研发(另设分支机构经营);垃圾焚烧炉渣、飞灰综合处理;对能源业、环保业的投资;再生资源回收;生活垃圾清扫、收集、运输、处理服务;环卫道路清扫、保洁服务;垃圾分类收运项目开发与管理;污泥处理、餐厨垃圾处理、建筑垃圾处理、污水处理、大件垃圾处理、园林垃圾处理、土壤修复;环保工程、市政工程、公路路面工程、房屋建筑工程、房屋建筑装饰装修工程、机电设备安装工程、土石方工程、管道工程(不含危险化学品运输管道)、公路工程、桥梁工程、隧道工程、河道工程、城市及道路照明工程、公路养护工程、园林绿化工程、建筑智能化工程、交通安全设施工程、园林景观工程、水电工程的设计、施工(以上工程不含爆破);道路普通货物运输;环保设备的研发、生产、销售;金属材料、建筑材料的销售;物业管理。

污染源监管分类: 废气、废水、噪声、固体废物;

总规模: 日处理炉渣 700 吨;

地块地理位置图见图 2.1-1。地块平面布置见图 2.1-2。

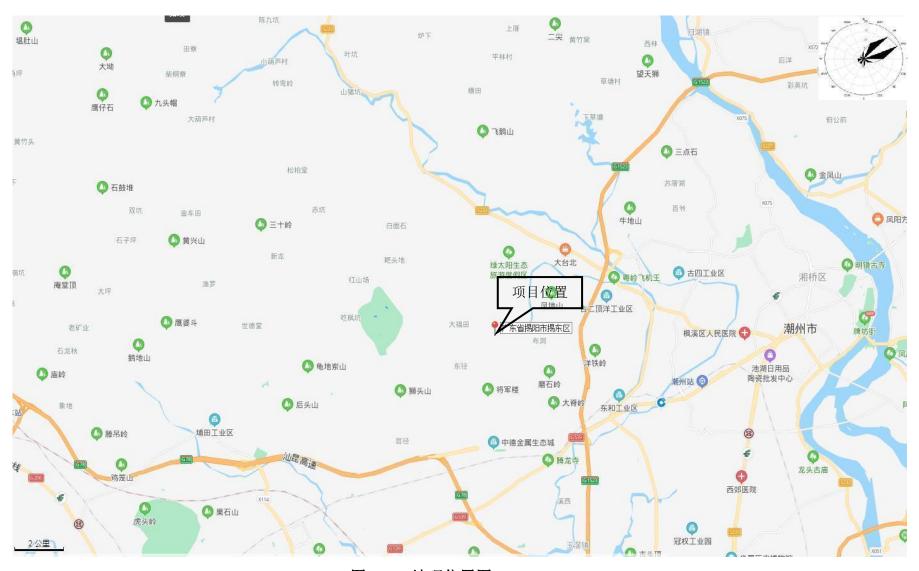


图 2.1-1 地理位置图

图 2.1-2 平面布置图

2.1.2 项目概况

2.1.2.1 生产概况

为避免将来垃圾围城带来环境污染,欧晟绿色燃料(揭阳)有限公司在揭阳市揭东区玉滘镇东径村建设生活垃圾综合处理项目,设计总规模日处理生活垃圾 2000吨(年处理 73.00万吨);一期工程日处理生活垃圾 1000吨(年处理 36.5万吨);一期已建成使用,未来二期工程日处理生活垃圾 1000吨(年处理 36.5万吨)。生活垃圾经焚烧后,大约会产生 20%的炉渣,按欧晟绿色燃料(揭阳)有限公司设计的总处理规模 2000t/d 计算,则炉渣产生量约 14.6万 t/a,该炉渣含有铁、铝等金属物质,具有一定的资源化回收价值,须尽快配套建设炉渣处置项目以解决炉渣出路。

本项目炉渣不属于危险废物,其颗粒粗细分布较均匀,物质组成复杂,具有较高的强度;金属和有机质含量较低,坚固性好,符合国家标准《生活垃圾焚烧炉渣集料》(GB/T25032-2010)中对集料原料的要求,可用于生产免烧砖。成品砖符合《混凝土路面砖》(GB28635-2012)相关要求。

由于生活垃圾焚烧过程中,炉渣实际产量会因垃圾成分的变化有所波动,所以本项目结合生产设备的处理能力,综合设计炉渣总处理规模为 21 万 t/a,按年工作天数 300 天计,日处理规模为 700 吨,大于欧晟电厂理论上产生的炉渣量,使项目运行过程满足一定的弹性变化,本评价以 21 万 t/a 的炉渣处理规模进行分析。

2.1.2.2 生产工艺与污染防治情况

(1) 生产工艺

生产工艺流程如下:

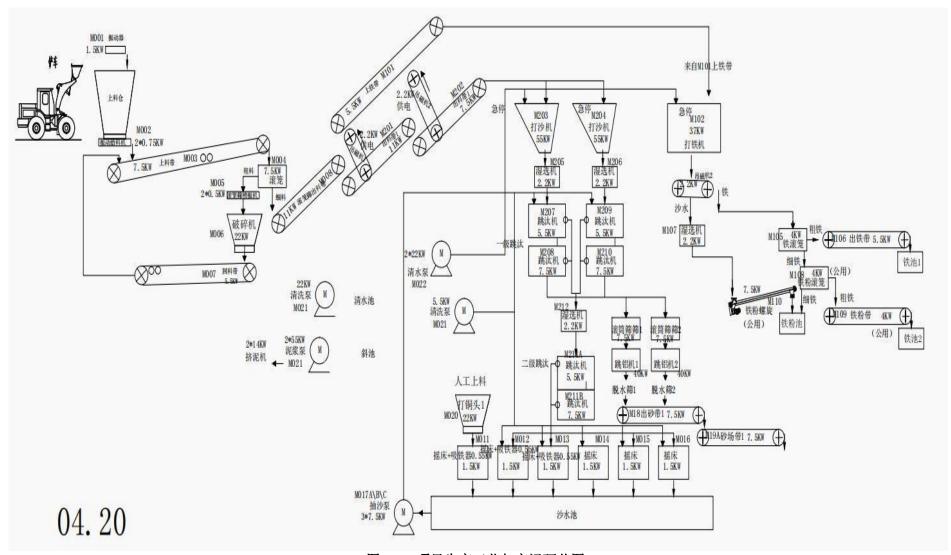


图2.1-3 项目生产工艺与产污环节图

炉渣处理工艺流程简述:

本项目为生活垃圾炉渣综合利用,主要对炉渣进行预处理后,作为集料交由建材厂进行综合利用。项目不涉及飞灰的处置。

由欧晟垃圾焚烧发电厂送达的炉渣用振动给料机均匀装入给料斗,分选出大体积的物料,以防堵塞料斗出口。筛下炉渣经上料带输送到滚笼上分选出体积较大的未燃尽物质和其它杂物,其中未燃尽块状物集中送回欧晟绿色燃料(揭阳)有限公司垃圾焚烧炉焚烧,其余大部分通过滚笼筛槽振机分选后经过破碎机使之体积变小重新返回上料带动机。

细料通过滚笼筛出料带进入上铁带,由吊磁器进行 2 次磁选,磁选出的金属物质进入打铁机,通过吊磁机筛选出铁,通过铁滚笼筛选出粗铁后,通过出铁带和铁粉带进入铁池,另一部分磁选物质通过湿选后经铁粉螺旋机进入铁粉池。非磁选物质经过湿选后,进入跳汰机、跳铝机、摇床等工序进行重选,金属物质全部收集后外售,重选后非金属物料进行渣水分离,经预处理后的炉渣集料外售作建筑原料。

2.1.2.3 原辅材料

本项目使用原辅料见下表。

使用环节 储存 最大 储存 序号 原料名称 年消耗量 来源 /工序 方式 储存量 位置 欧晟绿色 燃料(揭 预处理车 1 炉渣 21 万 t 预处理 堆场 700 吨 阳)有限公 间 司

表 2.1-1 本项目主要原辅材料理化性质

2.1.3 企业环保设施情况

2.1.3.1 废气污染物防治设施情况

根据项目实际运行情况,废气主要为粉尘生产废气。项目废气主要污染物排放情况汇总见表 2.1-2。

主要污染物	产生工序/设备	处理方式及排放去向
粉尘废气	预处理进料粉尘、破碎粉尘料尘	集气罩+布袋除尘处理后引至 15m 排气 简排放。满足广东省《大气污染物排放 限值》(DB44/27-2001)第二时段排放 限值

表 2.1-2 主要废气污染物排放情况汇总表

2.1.3.2 废水处理设施情况

根据项目实际运行情况,项目产生的废水包括生产废水(主要为清洗废水)和

生活污水。

项目废水产生、排放情况汇总见表 2.1-3。

表 2.1-3 主要废水污染物排放情况汇总表

主要污染物	产生工序	处理方式及排放去向
悬浮物	抑尘,破碎、磁 选、重选以及抑 尘	项目产生的生产废水经沉淀池沉淀出后,出水全部回用 于生产工序和堆场抑尘,细砂压滤机压滤处理
生活污水	员工办公	项目生活污水经一体化污水处理设备处理后达到《城市污水再生利用 城市杂用水水质》(GB/T 18920-2020)中的绿化标准后回用于周边绿化,不外排

2.1.3.3 固体废物情况

根据项目实际运行情况,产生的固体废物主要为生活垃圾和工业固体废物。固体废物种类及处理方式见下表 2.1-4。

表 2.1-4 项目固体废物产生及处置情况汇总表

序号	固废类别	固废名称	产生环节	产生量(t/a)	处置措施
1		布袋收 集粉尘	布袋除尘 器	32.73	
2	般 工	车间降 尘	车间抑尘	3.502	收集后直接混入预处理后炉渣
3	固业	未燃烬 物质	筛分、人工 筛选	6262.447	
4	体 废	金属物质	筛分、人工 筛选、磁选	4200	暂存于一般固废暂存间,定期外售至钢 铁厂回炉
5	物	压滤机 细砂	沉淀池、压 滤	255.83	压滤后暂存于细砂堆场,定期外售至建 材厂
6	生	活垃圾	员工生活	6.68	
7		污水处理 产生污泥	生活污水 处理设施	0.31	收集后交由环卫部门清运处理

2.1.3.4 噪声防治情况

项目运营期噪声污染源主要为破碎机、滚筒筛、螺旋输送机等机械设备运行时产生的噪声,噪声源强在70-90dB(A)之间,通过隔声、消声、减振等措施,基本可确保本项目厂界外 1m 处噪声可达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中3类标准。

2.1.4 区域自然环境概况

2.1.4.1 地理位置

揭阳市位于广东省东南部,地跨东经 115°36′至 116°37′39″,北纬 22°53′至 23°46′27″。北靠兴梅,南濒南海,东邻汕头、潮州,西接汕尾。陆地面积 5240.5 平方公里。大陆海岸线长 82 公里,沿海岛屿 30 多个;内陆江河主要有榕江、龙江和练江三大水系。揭阳市现辖榕城区、揭东区、惠来县、揭西县、(代管)普宁市,并在市区设立揭阳产业转移工业园管理委员会,空港经济区管理委员会、普宁华侨管理区(即普侨区,属于普宁市管辖)和大南山华侨管理区,赋予部分县级管理职能。揭阳市基层设置 64 个镇、10 个乡、26 个街道办事处,15 个农场。

揭东区位于广东省东部,潮汕平原东北部,东接汕头市区和潮州市,西邻揭西县,南隔榕江与潮阳市、普宁市相望,南部中间为揭阳市区,北与丰顺县接壤。揭东区辖龙尾镇、白塔镇、霖磐镇、桂岭镇、月城镇、玉湖镇、新亨镇、锡场镇、埔田镇、云路镇、玉窖镇等镇、曲溪街道和揭东经济开发区,下辖 227 个行政村。揭东区人民政府驻地曲溪街道。

揭东区位于广东省东部,地处汕头、潮州、揭阳、梅州四市的中心地带,东接汕头市区和潮州市潮安区,西连榕城区,北与梅州市丰顺县接壤。揭东区总面积 850 平方公里,截止至 2014 年初辖 14 个镇,一个街道和揭东经济开发区,下辖 227 个行政村。总人口 103 万(2012 年)。揭东区属亚热带季风海洋气候,年均气温 21.5 度,年均降雨量 1722.6 毫米。

揭阳市晟源美佳环保有限公司位于揭阳市揭东区玉滘镇东径路尾欧晟电厂东侧,厂区东侧为垃圾渗滤液应急调节池,区域东北侧为空地,西南侧和西侧均为空地。

2.1.4.2 水文资料

揭阳全市河流总长 1097.5km, 年均径流量 62 亿 m³。水力理论蕴藏量 44.87 万 kW, 其中可开发装机 16.22 万 kW, 约占理论蕴藏量的 36.2%。境内大气降水量较大, 年均约 1800—2000mm。过境容水较多, 水资源极为丰富, 每平方公里土地面积径流量可达 125.98 万 m³。全市各县人均水资源占有量为 1862—3080 m³,耕地亩均水资源占有量达 3788—5326 m³。境内水能蕴藏量为 25.1 万 kW。主要河流河水pH 值在 6.3—6.8 之间,属弱酸性; 硬度极低,绝大多数河段水质达到 1—2 级。

揭阳市境内河网密布,有榕江、龙江、练江三大水系。其中榕江南北河环绕全

境,境内溪港交织。榕江是潮汕的母亲河,由南、北河汇合而成。榕江水系支流众多,水力资源丰富,流域面积 4408km²,占整个潮汕土地面积的三分之一多。江面宽 200~800m,水深波平,榕江在广东省是仅次于珠江的深水河,3000~5000 吨级海轮可经汕头出海到达世界各港口城市,被誉为粤东"黄金水道"。榕江南河为主流,长达 175 公里,多年平均径流量为 87.3m³/s,其坡度为 0.493%。

榕江,发源于陆丰县凤凰山,自西向东流,在汕头市牛田洋注入南海,干流长 185 km,流域面积 4628km²,流经揭西、揭东、榕城全境和普宁、潮阳、潮州、陆 丰、丰顺等县、市的一部分。上游地势陡峻,降雨强度大,洪水汇流快,中下游比 降较平缓,地势平坦。流域受洪水暴潮威胁耕地面积达 88 万亩,约占流域全部耕地的 55%。流域地表植被较好,但支流上沙水、新西河及车田水上游水土流失较严重。最大支流是北河,干流长 92 km,集水面积 1692 km²,流经丰顺、揭东两县及榕城区,在炮台双溪嘴汇入榕江。五经富水是第二支流,主流河长 76 km,集水面积 719 km²,水资源已得到较好的开发利用。

枫江又名枫溪,发源于广东省潮州市笔架山,属榕江二级支流,全长 71 公里,下游揭东县段长 20 公里。主流经潮州市枫溪区,东南流经潮安县田东镇、登塘镇、古巷镇,折向西南经凤塘镇和揭东区玉滘、登岗、云路、炮台等镇于枫口(丰溪村)汇入榕江北河。

2.1.4.3 地质资料

根据揭阳市晟源美佳环保有限公司位于揭阳市揭东区玉滘镇东径路尾欧晟电厂东侧,本项目距离揭阳市表面处理生态工业园电镀基地约 3km,参照揭阳市建筑设计院勘察队 2013 年编制的《揭阳市表面处理生态工业园电镀基地厂房岩土工程勘察报告。根据钻探揭露情况,岩土地质成因主要划分为第四系冲沉积土层有素填土、粉质黏土、砂质粘性土、全风化砂岩、强风化砂岩(J)形成于第四系全新世及侏罗系。

钻探查明,在钻探控制的深度内,土层自上而下可划分为 5 个单元层,各层特征如下:

1、素填土

层厚 1.60~5.10 米, 土黄或灰黑色,湿,土质松散。填土成分由砂质土、碎石块组成,碎石大小不均,风化程度不一,钻进时漏水严重,松散欠压实。

评价:素填土层,物理力学性质差,承载力低。

2、粉质粘土

层面埋深 $1.60\sim5.10$ 米,层厚 $1.50\sim10.00$ 米,灰或土黄色,饱和,土质粘滑,手捻摸有砂感。局部含砂岩碎石块。取原状土样十三件,测试结果:W=19.6~31.5%, ρ =1.86~2.01g/cm³,e=0.617~0.904,Sr=86.3~97.8%,I=11.5~16.3,I=0.29~0.62,a=0.26~0.35MPa,Es=5.10~7.61MPa,C=17~34.6KPa, Φ =9.6~21.7 度。其它指标详土工试验成果表。

标准贯入试验 33 次, N=5~9 击, 平均 6.7 击, 地基承载力特征值 fak=130KPa。 评价: 粉质粘土层, 物理力学性质较好, 承载力稍高。

3、砂质粘性土 (残积土)

层面埋深 3.60~5.10 米,层厚 0.90~8.20 米。灰或灰黑色,饱和,可塑,土质粘,含砂质,为砂岩经强风化而形成的残积土,岩土较完整地保留着原岩其结构特征。下部土质较硬。取原状土样六件,测试结果:W=21.7~26.1%, $\rho=1.94~2.00g/cm^3$,e=0.660~0.737,Sr=85.3~94.3%,I=9.3~11.5,I=0.24~0.55,a=0.24~0.30MPa',Es=6.10~6.99MPa,C=16~23KPa, $\Phi=14.3~24.7$ 度。其它指标详土工试验成果统计表及土工试验成果表。

标准贯入试验 46 次, N=6~13 击, 平均 9.6 击, 地基承载力特征值 fak= 160KPa。 评价: 砂质粘性土层, 土层厚度大, 物理力学性质好, 承载力较高。可作为本工程桩基持力层。

4、全风化砂岩

层面埋深 5.60~17.60 米, 层厚 2.70~9.10 米。灰黑色,湿,硬至坚硬,岩芯多呈碎块状或短柱状,成型差,钻进跳动带响声。

标准贯入试验 58 次, N=30~37 击, 平均 30.5 击, 地基承载力特征值 f= 250KPa。 评价:全风化砂岩层,物理力学性质好,承载力高,可作为本工程桩基持力层。 5、强风化砂岩

层面埋深 21.00~22.20 米,钻孔揭露层厚 2.70~10.40 米,未钻穿。灰黑色,湿硬至坚硬,岩芯多呈碎块状或短柱状,成型差,钻进跳动带响声。标准贯入试验 11 次,N=51~57 击,平均 53.8 击,地基承载力特征值 f=300KPa。

评价:强风化砂岩层,物理力学性质好,承载力高,可作为本工程桩基持力层。 勘察结果表明,揭阳市表面处理生态工业园电镀基地厂房工程,场地原为山地, 经铲高填低平整而成,填土层厚薄不均匀、变化大。

2.1.4.4 气象资料

项目所在区域属南亚热带季风气候,常年气候温和,雨量充沛,光热充足。年平均气温 21.1°C,1 月份为 12.7°C,7 月份为 28.1°C,极端高温是 1982 年 7 月 28 日为 37.3°C,极端低温是 1976 年 1 月 17 日为-2.4°C。日照年平均 1884 小时,最多的 1971 年达 2262 小时,最少的 1975 年仅 1576 小时。无霜期 300 天以上。霜日多数 出现在 12 月至 2 月。年均降雨量 2105 毫米,降雨量较多的坪上莲花山年平均降雨量 2612 毫米。根据揭阳气象站的累年统计资料,区域主要风向是东南风,次主导风向为东南偏东风和东风,其频率分别为 13%、11%和 11%,全年静风频率为 25%。春季东南风为 18.3%,夏季东风和东南风各占 14%,秋季东南风、东南偏东风和东风和东风合计占 32%,冬季西北风占 15.3%,其次是东南风和东风,各占 10.7%和 11.3%。

揭阳市地属亚热带季风性湿润气候,日照充足,雨量充沛,终年无雪少霜。揭阳市气象站近 20 年(2002-2021年)气象统计结果如表 2.1-1 所示,多年风向玫瑰图见图 2.1-5。

表2.1-5 揭阳气象站近20年的主要气候资料统计表

项目	数值
年平均风速(m/s)	1.9
最大风速(m/s)及出现的时间	35.2 相应风向: ENE 出现时间: 2016 年 10 月 21 日
年平均气温(℃)	22.7
极端最高气温(℃)及出现的时间	39.7 出现时间: 2020 年 7 月 18 日
极端最低气温(℃)及出现的时间	0.2 出现时间: 2010 年 12 月 17 日
年平均相对湿度(%)	77
年均降水量(mm)	1706.1
年最大降水量(mm)及出现的时间	最大值: 2520.2mm 出现时间: 2016年
年最小降水量(mm)及出现的时间	最小值: 1144.5mm 出现时间: 2020 年
年平均日照时数(h)	1825.4

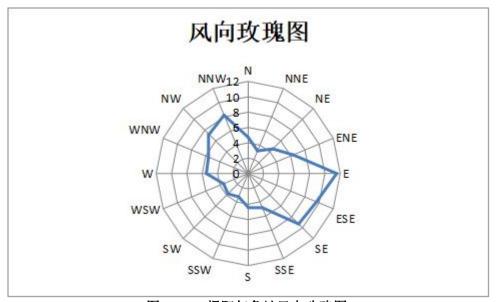


图 2.1-4 揭阳气象站风向玫瑰图

2.1.4.5 自然资源

揭阳市自然资源比较丰富。全市河流总长 1097.5 公里,年均径流量 62 亿立方米。水力理论蕴藏量 44.87 万千瓦,其中可开发装机 16.22 万千瓦,约占理论蕴藏量的 36.2%。矿产资源丰富,主要有磁矿、锡矿、钨矿、铜矿、铁矿、金矿、稀土矿和甲长石、花岗石、高岭土、瓷土等。花岗岩资源极为丰富,用以加工高级建筑装饰板材,以花纹、颜色的高雅而深受消费者欢迎。全市现有森林蓄积量 325.5 万立方米,森林覆盖率 46.9%。植物种类 1130 多种,其中稀有植物 20 多种,如乌相、桧树等。珍稀动物 15 种,如巨蜥(五爪金龙)、大鲵(娃娃鱼)、穿山甲等。

揭阳山环水绕,有丰富的动物和鱼类。矿产资源主要有磁矿、锡矿、高岭土、稀土矿、钨矿等。花岗岩资源极为丰富,用以加工高级建筑装饰板材,以花纹、颜色的高雅而深受消费者欢迎。旅游资源丰富,有集"雄、奇、灵、秀"不同风格于一体的桑浦山,有石母寺、广安寺、吉祥寺、九天圣王庙、龙砂古庙、等古寺古庙,有翁梅斋墓、双溪明月、风门古径等自然风景。

2.1.4.6 地下水埋深及流向

根据现场踏勘发现,本公司西面是小山丘,东南面 4.9 公里有一条枫江自东北向西南,再流入榕江。结合玉滘镇的山脉地势等,判断本地块地下水流向大致为自西北向东南,如图 2.1-5 所示。

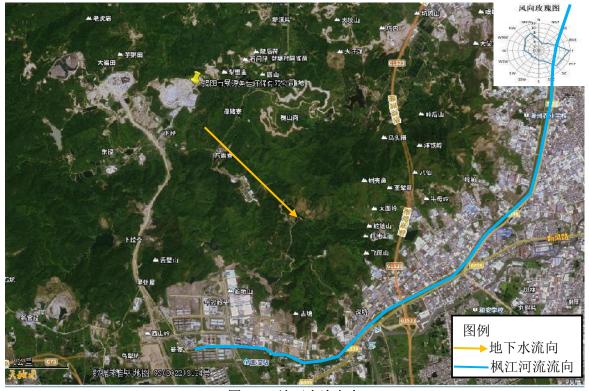


图2.1-5 地下水流方向

2.1.5 土地使用权

根据与揭阳市晟源美佳环保有限公司相关人员访谈了解到,揭阳市晟源美佳环保有限公司所在地块占地面积约 8000 平方米,厂房建筑面积 3675 平方米,该地块来源为黄泽辉向广东省揭阳监狱租赁所得,黄泽辉于 2015 年 6 月 30 日将该地块租赁至黄楚裕。目前地块所有权属广东揭阳监狱,该场地于 2019 年 4 月 15 日由黄楚裕租赁给揭阳市晟源美佳环保有限公司使用,有效使用期为十五年。

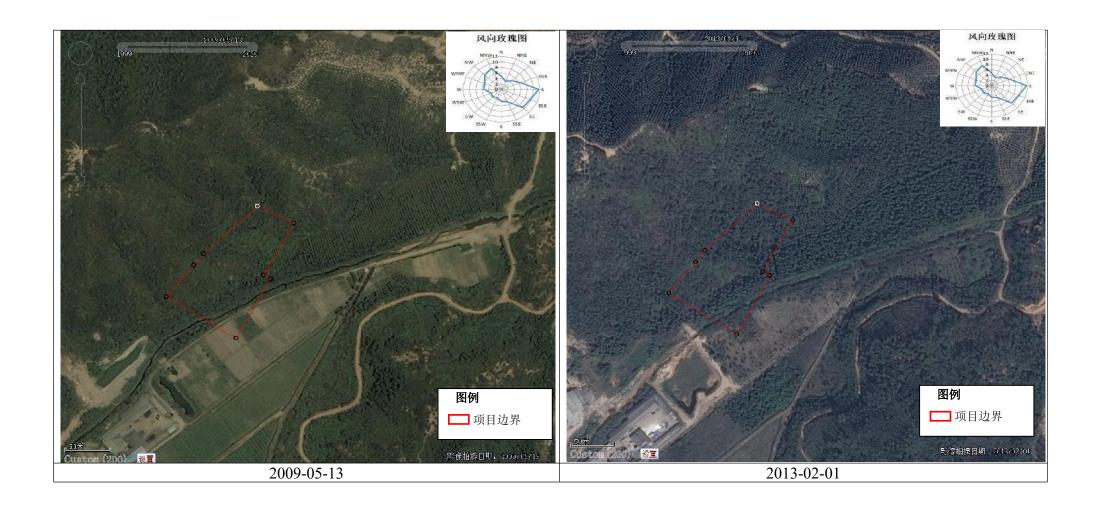
2.1.7 土地利用历史

根据地块基础信息调查结果,该地块涉及1段利用历史,详见图2.3-3,该地块2009以前为林地,2014年该地块开始平整,2015年地块内有两栋铁皮建筑为沙场办公区,2019年两栋铁皮建筑被拆除,揭阳市晟源美佳环保有限公司在本地块建厂投产并一直沿用至今。该地块历史影像图如图2.3-3所示。

 时间
 土地权属情况
 调查地块使用情况

 2009 年前
 揭东区人民政府
 地块为林地

 2009 年-2013 年
 揭东区人民政府
 地块为林地


 2014 年
 揭东区人民政府
 地块开始平整

 2015 年
 广东揭阳监狱
 广东揭阳监狱将该地租给沙场建设所用

表2.3-1 地块历史沿革表

2019 年至今	广东揭阳监狱	该地块来源为黄泽辉向广东省揭阳监狱租赁所得,黄泽辉于 2015 年 6 月 30 日将该地块租赁至黄楚裕。目前地块所有权属广东揭阳监狱,该场地于 2019 年 4 月 15 日由黄楚裕租赁给揭阳市晟源美佳环保有限公司使用,有效使用期为十五年。建设一栋炉渣处理车间,一栋成品存放区、一栋办公区及一栋生活区。		

根据现场踏勘以及利用奥维卫星图像(追溯到 2013 年 2 月)分析可知,本项目范围内地块使用情况如下:

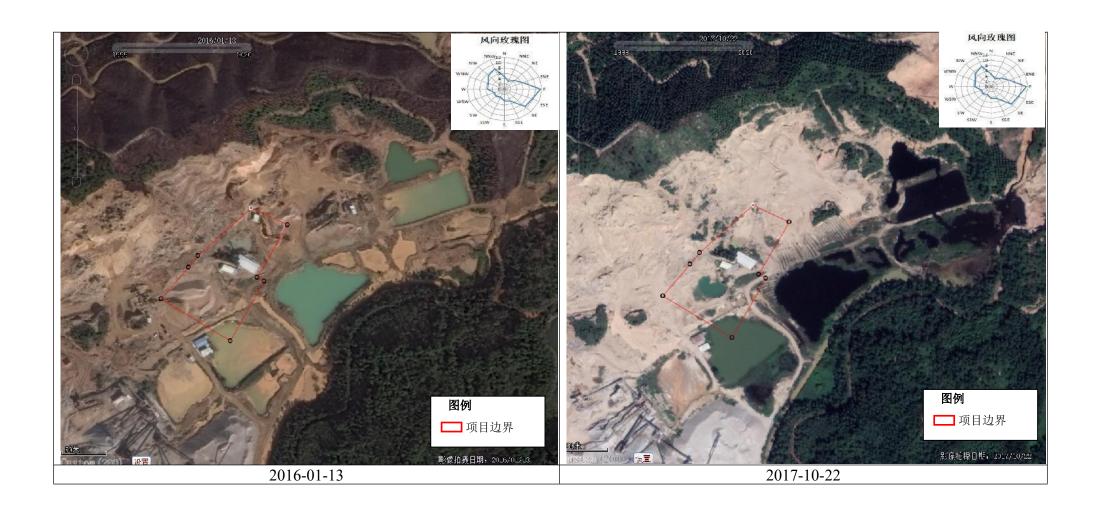


图 2.1-6 调查地块历史影像图

2.2 现场踏勘

根据前期资料收集和人员访谈可知,调查地块权属广东揭阳监狱。揭阳市晟源 美佳环保有限公司厂区位于揭阳市揭东区玉滘镇东径路尾欧晟电厂东侧的平缓地带 上,占地面积 8000 平方米,建成包括炉渣生产车间、生活区、办公区等。

根据 2023 年 6 月 3 日的现场勘查,调查地块内的揭阳市晟源美佳环保有限公司的相关生产设备及配套厂房基本无变化。地块内大部分建构筑物较新,厂区内部分区域有水泥硬化层,水泥硬化层厚度约在 0.15-0.20m,场地内水泥出现裂缝现象较少。

地块平面布置图件图 2.2-1。现场图片见图 2.2-2。

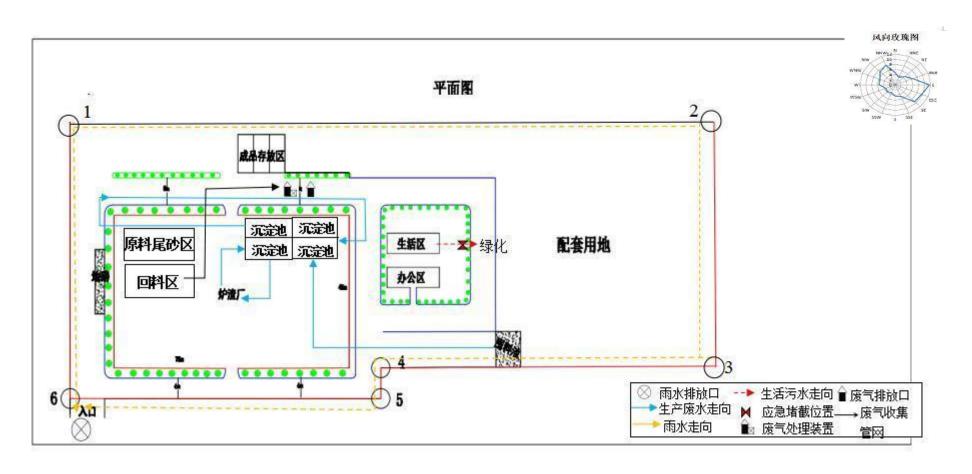


图 2.2-1 平面布置图

成品存放区

炉渣集料堆放区

生产废水沉淀池

图 2.2-2 现场图片

2.3 人员访谈

为补充和确认待监测区域及设施的信息,核查所收集资料的有效性,进行了人员访谈。对地块管理人员、现场工作人员等进行了访谈,确认所收集资料的真实有效性和监测区域等信息。

根据人员访谈及现场踏勘、资料分析: 地块历史上未发生环境污染事故; 各项污染物处理设施均稳定运行,设施设备的运行管理均设置专人负责; 涉及的原辅材料、固体废物运输、储存和装卸均严格按照相关规定要求执行。

第三章 自行监测方案

3.1 重点监测单元识别

根据《工业企业土壤和地下水自行监测 技术指南(试行)》HJ 1209—2021 中重点监测单元的识别与分类,结合《重点监管单位土壤污染隐患排查指南(试行)》等相关技术规范的要求排查企业内有潜在土壤污染隐患的重点场所及重点设施设备,将其中可能通过渗漏、流失、扬散等途径导致土壤或地下水污染的场所或设施设备识别为重点监测单元。重点监测单元分类表如下:

表 3.1-1 重点监测单元分类表

		** ——*** / / – / / / / / / / / / / / / / / /
	单元类别	划分依据
	一类单元	内部存在隐蔽性重点设施设备的重点监测单元
	二类单元	除一类单元外其他重点监测单元
12	四世 本 年 上 几 长 几 夕	化二进化工厂工业工具出现工具工具工具工具工具工具工具工具工具工具工具工具工具工具工具工具工具工具

注:隐蔽性重点设施设备,指污染发生后不能及时发现或处理的重点设施设备,如地下、半地下或接地的储罐、池体、管道等。

本次自行监测工作重点监测单元的识别结果见下表。

表 3.1-2 重点监测单元识别结果一览表

序号	重点单元	重点设施	识别依据
A	单元 A-炉渣综合 利用区域	炉渣综合利用区、 废水处理地下沉 淀池体	该区域为炉渣综合利用区域、成品存放区,主要分布炉渣综合利用生产线、废水处理设施、废气处理设施、回料区及未燃尽物区等,建设面积约3375平方米。 ①该区域主要为炉渣综合利用车间、成品存放区,分布炉渣综合利用生产线、废水处理设施、废气处理设施、回料区及炉渣集料区等,该区域的废水处理设施位于车间东侧,项目废水为炉渣综合利用过程产生的生产废水,在使用过程中存在跑冒滴漏的可能性,炉渣综合利用车间东北侧外部的抽水泵区域无硬底化,可能存在生产废水渗入地下产生对土壤和地下水的污染的环境风险; ②该区域的东南侧与西北侧外部存在裸露的土壤,可能存在产生的污染物渗入地下产生对土壤和地下水的污染的环境风险。 因此该区域作为重点监测单元。
В	单元 B-生活办公 区及堆场区域	堆场	该区域为生活办公区及堆场区域, 堆场区域主要暂存经预处理后的炉渣, 炉渣堆场

	出料口未设置围堰,下雨的时候会导致雨
	水将堆场中的炉渣集料冲刷至外环境。
	堆场区域西侧存在裸露地地块,位于厂区
	的常年下风向,可能存在产生的污染物渗
	入地下产生对土壤和地下水的污染的环
	境风险。
	因此该区域作为重点监测单元。

3.2 监测布点

3.2.1 土壤及地下布点位置确定原则

本次场内的采样布点以《工业企业土壤和地下水自行监测 技术指南》(试行)HJ 1209—2021为主,结合《土壤环境监测技术规范》HJ/T 166-2004、《重点行业企业用地调查疑似污染地块布点技术规定(试行)》和《地下水环境监测技术规范》HJ 164-2020等规定,确定本次土壤监测点位布点原则和地下水监测点位布点原则。

- (1)监测点位的布设应遵循不影响企业正常生产且不造成安全隐患与二次 污染的原则。
- (2)点位应尽量接近重点单元内存在土壤污染隐患的重点场所或重点设施设备,重点场所或重点设施设备占地面积较大时,应尽量接近该场所或设施设备内最有可能受到污染物渗漏、流失、扬散等途径影响的隐患点。
- (3)根据地勘资料,目标采样层无土壤可采或地下水埋藏条件不适宜采样 的区域,可不进行相应监测,但应在监测报告中提供地勘资料并予以说明。

3.2.1 土壤及地下监测点位布点

布点位置优先设置在布点区域内潜在污染源可能对土壤环境产生影响的区域,如地表裸露、地面无防渗层或防渗层破裂处;并尽量靠近潜在污染源所在位置,如生产设施、罐槽、污染泄露点等,点位布设应遵循不影响企业正常生产且不造成安全隐患与二次污染的原则。若上述选定的布点位置现场不具备采样条件,应在污染物迁移的下游方向就近选择布点位置。重点监管企业在建设用地详查阶段的监测点,可作为企业土壤自行监控点位布设区域。根据《工业企业土壤和地下水自行监测 技术指南》(试行)HJ 1209—2021 中相关要求,重点场所或重点设施设备分布较密集的区域可统一划分为一个重点监测单元,每个重点监测单

元原则上面积不大于 6400m²。

通过前期收集资料、现场勘察,再结合项目实际平面布设,由于炉渣综合利用生产线、废气处理设施、沉淀池布置在同一车间,与成品存放区作为一个单元 A-炉渣综合利用区、成品存放区; 堆场区与办公生活区单独作为一个区域, 分布为单元 B 堆场-生活办公区及堆场区域。

综上所述,把本项目地块分为2个一类单元,一类单元涉及的每个隐蔽性重点设施设备周边原则上均应布设至少1个深层土壤监测点,单元内部或周边还应布设至少1个表层土壤监测点。每个重点单元对应的地下水监测井不应少于1个。每个企业地下水监测井(含对照点)总数原则上不应少于3个,且尽量避免在同一直线上。

在企业厂区内 A 单元区域设置土壤采样点 2 个、地下水采样点 1 个,在 B 单元区域设置土壤采样点 2 个、地下水采样点 1 个。因此在项目内布设 4 个土壤监测点及 2 个地下水监测点。在厂外布设 1 个地下水监测点。计划布设个 4 土壤监测点位,3 个地下水监测点位。重点区域分布图及监测点位分布图详见下图。

根据布点数量确定原则,结合现场踏勘情况,本地块已筛选 2 个重点监测单元和 1 个周边区域,见表 3.2-1。计划布设个 4 土壤监测点位,3 个地下水监测点位。

场地土壤、地下水监测点位布设位置示意图见图 3.2-1, 布点位置信息见表 3.2-1。

布点区域	编号	布点位置	经纬度	是否为地下 水采样点	土壤钻探深度 (米)	筛管深度范围 (米)
	AT1	单元 A 炉渣综合 利用车间外的绿 化带	E: 116°29′52″ N: 23°39′24″	否	表层土采一个 样品 0-0.5m 范围	
单元 A	AT2	单元 A-炉渣综合 利用区域靠近沉 淀池处	E: 116°29′53″ N: 23°39′25″	否	深层土采 1 个样品,钻探深度略低于 6m,沉淀池体的深度为 6m,要略低于沉淀池体的深度	

表 3.2-1 土壤和地下水采样点

	AS1	单元 A-炉渣综合 利用区域外停车 场区域		116°29′55″ 23°39′24″	定, 半烛/J地 下水采样占	一般情况下采样深度应在监测 井 水 面 下0.5m以下,采一个样品	准钻至初见水位后,停钻1
W	BT1	单元 B-堆场区域 西侧的裸露地地 块	1	116°29′54″ 23°39′26″	否	表层土采一个 样品 0-0.5m 范围	
单元 B	BT2/BS1	单元 B-堆场区域		116°29′55″ 23°39′26″	旦 上 <u></u> 東和州	土壤和地下水 采样点,土壤 钻探深度低于 0.5m,地下水 采样监测井水 面下 0.5m 以下	筛管深层,以准结后,所有,是一个,是一个,是一个,是一个,是一个,是一个,是一个,是一个,是一个,是一个
对照点	L DZS	地块外部地下水 水流方向上游	1	116°29′49″ 23°39′22″	单独为地下 水采样点	一般情况下采 样深度应在监 测井水面下 0.5m 以下	筛管深度视实 下腹视实 下腹视实 下腹。 下,以实验不知,是, 一个,一个, 一个, 一个, 一个, 一个, 一个, 一个, 一个, 一个,

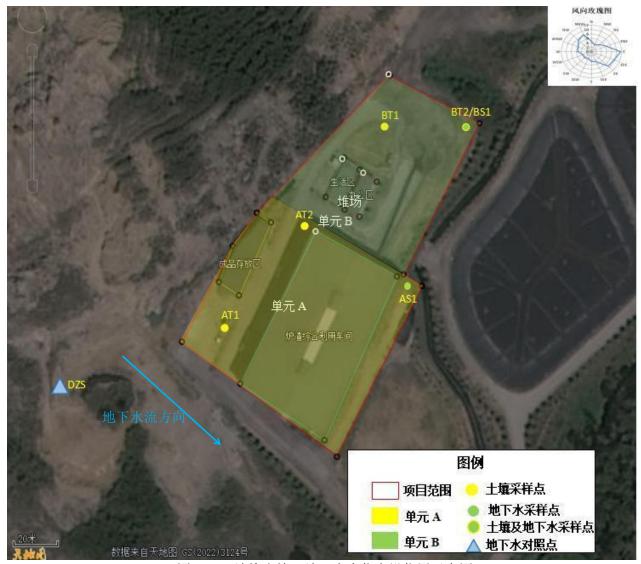


图3.2-1 地块土壤、地下水点位布设位置示意图

3.2 监测布点样品采集

3.2.1 钻探深度

结合本地块实际情况,确定的本方案钻探深度设计重点如下:

1) 深层土壤

深层土壤监测点采样深度应略低于其对应的隐蔽性重点设施设备底部与土壤接触面。

下游 50 m 范围内设有地下水监测井并按照本标准要求开展地下水监测的单元可不布设深层土壤监测点。

2) 表层土壤

表层土壤监测点采样深度应为 0~0.5 m。

单元内部及周边 20 m 范围内地面已全部采取无缝硬化或其他有效防渗措施,无裸露土壤的,可不布设表层土壤监测点,但应在监测报告中提供相应的影像记录并予以说明。

3) 地下水监测井

地下水自行监测原则上只调查潜水。涉及地下取水的企业应考虑增加取水层监测。

采样深度参见 HJ 164 对监测井取水位置的相关要求。

综上所述,确定 AT2 土壤采样点位计划钻探深度略低于 6 米,BT2/BS1 土壤和地下水共用点位计划钻探深度为 0.5 米以下。实际钻探深度应根据现场钻探过程中揭露的地层情况、土壤和地下水的气味和颜色、现场快速检测设备的检测结果等情况进行调整。

3.2.1.1 土壤采样深度

1) 深层土壤

深层土壤监测点采样深度应略低于其对应的隐蔽性重点设施设备底部与土壤接触面。

下游 50 m 范围内设有地下水监测井并按照本标准要求开展地下水监测的单元可不布设深层土壤监测点。

2) 表层土壤

表层土壤监测点采样深度应为 0~0.5 m。

单元内部及周边 20 m 范围内地面已全部采取无缝硬化或其他有效防渗措施,无裸露土壤的,可不布设表层土壤监测点,但应在监测报告中提供相应的影像记录并予以说明。

3.2.1.2 地下水采样深度

地下水采样深度应依据场地水文地质条件及调查获取的污染源特征进行确定。 对可能含有低密度或高密度非水溶性有机污染物的地下水,应对应的采集上部或下 部水样。其他情况下采样深度可在地下水水位线 0.5 m 以下。

地下水采样深度应结合污染物性质和地块水文地质条件确定,以最大程度的捕获污染为目的。

根据该地块污染特点,可能存在重金属等污染物,采样深度为水面以下 0-0.5m。地下水监测井筛管起止深度应略高于初见水位。应以实际钻探为准钻至初见水位后,停钻 1 个小时,测量地下水稳定水位,决定筛管开口深度。土壤和地下水的气味和颜色、现场快速检测设备的检测结果等情况进行调整。暂定筛管深度范围为 0.50-4.50m。

表 3.2-2 土壤布点采样情况

点位	位置	采样深度	样品层数	备注
AT1	单元 A 炉渣综合利用车间外的绿化带	表层土采一个 样品 0-0.5m 范围	1 个样/孔	/
AT2	单元 A-炉渣综 合利用区域靠 近沉淀池处	深层土采一个样品,钻探深度略低于6m,沉淀池体的深度为6m,要略低于沉淀池体的深度	1 个样/孔	/
BT1	单元 B-堆场区 域西侧的裸露 地地块	表层土采一个 样品 0-0.5m 范围	1 个样/孔	/
BT2	单元 B-堆场区 域	钻探深度位于 0.5m以下,采一 个样品	1 个样/孔	/

表 3.2-3 地下水布点采样情况

点位	位置	样品数	采样分层	备注
AS1	单元 A-炉渣综合利用区域 外停车场区域	1		/
BS1	单元 B-堆场区域	1	水位以下 0.5m	/
DZS	厂外对照点	1		/

3.2.2 样品采集

应严格按照《重点行业企业用地调查样品采集保存和流转技术规定(试行)》要求 执行。

3.2.2.1 土壤样品采集

(一) 土壤样品采集一般要求

用于检测 VOCs 的土壤样品应单独采集,不允许对样品进行均质化处理,也不得采集混合样。

取土器将柱状的钻探岩芯取出后,先采集用于检测 VOCs 的土壤样品,具体流程和要求如下:用刮刀剔除约 1cm~2cm 表层土壤,在新的土壤切面处快速采集样品。针对检测 VOCs 的土壤样品,应用非扰动采样器采集不少于 5g 原状岩芯的土壤样品推入加有 10mL 甲醇(色谱级或农残级)保护剂的 40mL 棕色样品瓶内,推入时将样品瓶略微倾斜,防止将保护剂溅出;检测 VOCs 的土壤样品应采集双份,一份用于检测,一份留作备份。

用于检测含水率、重金属、SVOCs等指标的土壤样品,可用采样铲将土壤转移至广口样品瓶内并装满填实。

采样过程应剔除石块等杂质,保持采样瓶口螺纹清洁以防止密封不严。

土壤装入样品瓶后,使用手持智能终端系统记录样品编码、采样日期和采样人员等信息,打印后贴到样品瓶上(建议同时用橡皮筋固定)。为了防止样品瓶上编码信息丢失,应同时在样品瓶原有标签上手写样品编码和采样日期,要求字迹清晰可辨。

土壤采样完成后,样品瓶需用泡沫塑料袋包裹,随即放入现场带有冷冻蓝冰的样品箱内进行临时保存。

(2) 土壤平行样要求

土壤平行样应不少于地块总样品数的10%,每个地块至少采集1份。如实际工作中该点位采样量不够,可由现场采样小组组长及内审人员根据实际情况进行调整。

平行样应在土样同一位置采集,两者检测项目和检测方法应一致,在采样记录单中标注平行样编号及对应的土壤样品编号。

(3) 土壤样品采集拍照记录

土壤样品采集过程应针对采样工具、采集位置、VOCs 和 SVOCs 采样瓶土壤装样过程、样品瓶编号、盛放柱状样的岩芯箱、现场检测仪器使用等关键信息拍照记

录,每个关键信息至少1张照片,以备质量控制。

(4) 其他要求

土壤采样过程中应做好人员安全和健康防护,佩戴安全帽和一次性的口罩、手套,严禁用手直接采集土样,使用后废弃的个人防护用品应统一收集处置;

采样前后应对采样器进行除污和清洗,不同土壤样品采集应更换手套,避免交 叉污染。

(二) 土壤样品现场快速检测

(1)根据地块污染情况,使用光离子化检测仪(PID)对土壤 VOCs 进行快速检测,使用 X 射线荧光光谱仪(XRF)对土壤重金属进行快速检测。

根据地块污染情况和仪器灵敏度水平,设置 PID、XRF 等现场快速检测仪器的最低检测限和报警限,并将现场使用的便携式仪器的型号和最低检测限进行记录。

- (2) 现场快速检测土壤中 VOCs 时,用采样铲在 VOCs 取样相同位置采集土壤置于聚乙烯自封袋中,自封袋中土壤样品体积应占 1/2~2/3 自封袋体积,取样后,自封袋应置于背光处,避免阳光直晒,取样后在 30 分钟内完成快速检测。检测时,将土样尽量揉碎,放置 10 分钟后摇晃或振荡自封袋约 30 秒,静置 2 分钟后将 PID 探头放入自封袋顶空 1/2 处,紧闭自封袋,记录最高读数。
 - (3) 应根据现场快速检测结果辅助筛选送检土壤样品。

(三)送检土壤样品筛选

原则上每个采样点位至少在3个不同深度采集土壤样品,其中,送检土壤样品应考虑以下几个要求:

- (1) 表层 0 cm~50 cm 处;
- (2) 存在污染痕迹或现场快速检测设备识别污染相对较重;
- (3) 若钻探至地下水位时,原则上应在水位线附近 50 cm 范围内和地下水含水层中各采集一个土壤样品;
- (4)当土层特性垂向变异较大、地层厚度较大或存在明显杂填区域时,可适当增加送检土壤样品。

(四) 土壤样品编码

(1) 土壤样品编码

样品编码格式: 地块编码 1XXSSS

其中,地块编码依据《重点行业企业用地调查信息采集技术规定》要求确定;

如 1XX, 1 代表土壤样品; XX 代表土壤采样点编号,从 01 开始编号。SSS 代表采样深度值(以分米计),如 0.1 米记为 001。

(2) 土壤平行样编码

平行样编码格式: 地块编码 1XXSSS-P

其中,地块编码 1XXSSS 含义同上,代表采集平行样的土壤采样点和深度,P 为平行样代号。

土壤平行样应二次编码,将二次编码后的标签打印并粘贴到土壤平行样的样品瓶上。

3.2.2.2 地下水样品采集

(一) 采样前洗井

采样前洗井要求如下:

- (1) 采样前洗井应至少在成井洗井 48 h 后开始。
- (2) 采样前洗井应避免对井内水体产生气提、气曝等扰动。若选用气囊泵或低流量潜水泵,泵体进水口应置于水面下 1.0 m 左右,抽水速率应不大于 0.3 L/min,洗井过程应测定地下水位,确保水位下降小于 10 cm。若洗井过程中水位下降超过 10 cm,则需要适当调低气囊泵或低流量潜水泵的洗井流速。

若采用贝勒管进行洗井,贝勒管汲水位置为井管底部,应控制贝勒管缓慢下降和上升,原则上洗井水体积应达到 3~5 倍滞水体积。

(3) 洗井前对 pH 计、溶解氧仪、电导率和氧化还原电位仪等检测仪器进行现场校正。

开始洗井时,以小流量抽水,记录抽水开始时间,同时洗井过程中每隔 5 分钟读取并记录 pH、温度(T)、电导率、溶解氧(DO)、氧化还原电位(ORP)及浊度,连续三次采样达到以下要求结束洗井:

- a) pH 变化范围为±0.1;
- b) 温度变化范围为±0.5℃;
- c) 电导率变化范围为±3%;
- d) DO 变化范围为±10%, 当 DO<2.0 mg/L 时, 其变化范围为±0.2mg/L;
- e) ORP 变化范围±10 mV;
- f) 10NTU<浊度<50NTU 时, 其变化范围应在±10%以内, 浊度<10NTU 时, 其变化范围为±1.0NTU; 若含水层处于粉土或粘土地层时,连续多次洗井后的浊度

>50NTU 时, 要求连续三次测量浊度变化值小于 5NTU。

- (4) 若现场测试参数无法满足(3) 中的要求,或不具备现场测试仪器的,则 洗井水体积达到 3~5 倍采样井内水体积后即可进行采样。
 - (5) 采样前洗井过程中产生的废水,应统一收集处置。

(二) 地下水样品采集

- (1) 采样洗井达到要求后,测量并记录水位,若地下水水位变化小于 10cm,则可以立即采样;若地下水水位变化超过 10cm,应待地下水位再次稳定后采样,若地下水回补速度较慢,原则上应在洗井后 2h 内完成地下水采样。
- (2) 地下水样品采集应先采集用于检测 VOCs 的水样, 然后再采集用于检测其他水质指标的水样。

对于未添加保护剂的样品瓶,地下水采样前需用待采集水样润洗2~3次。

采集检测 VOCs 的水样时,优先采用气囊泵或低流量潜水泵,控制采样水流速度不高于 0.3L/min。使用低流量潜水泵采样时,应将采样管出水口靠近样品瓶中下部,使水样沿瓶壁缓缓流入瓶中,过程中避免出水口接触液面,直至在瓶口形成一向上弯月面,旋紧瓶盖,避免采样瓶中存在顶空和气泡。

使用贝勒管进行地下水样品采集时,应缓慢沉降或提升贝勒管。取出后,通过调节贝勒管下端出水阀或低流量控制器,使水样沿瓶壁缓缓流入瓶中,直至在瓶口形成一向上弯月面,旋紧瓶盖,避免采样瓶中存在顶空和气泡。

地下水装入样品瓶后,使用手持智能终端记录样品编码、采样日期和采样人员等信息,打印后贴到样品瓶上。

地下水采集完成后,样品瓶应用泡沫塑料袋包裹,并立即放入现场装有冷冻蓝 冰的样品箱内保存。

- (3)地下水平行样采集要求。地下水平行样应不少于地块总样品数的10%,每个地块至少采集1份。
- (4)使用非一次性的地下水采样设备,在采样前后需对采样设备进行清洗,清洗过程中产生的废水,应集中收集处置。采用柴油发电机为地下水采集设备提供动力时,应将柴油机放置于采样井下风向较远的位置。
- (5) 地下水采样过程中应做好人员安全和健康防护,佩戴安全帽和一次性的个人防护用品(口罩、手套等),废弃的个人防护用品等垃圾应集中收集处置。
 - (6) 地下水样品采集拍照记录

地下水样品采集过程应对洗井、装样(用于 VOCs、SVOCs、重金属和地下水水质监测的样品瓶)、以及采样过程中现场快速监测等环节进行拍照记录,每个环节至少 1 张照片,以备质量控制。

(三) 地下水样品编码

(1) 地下水样品编码

样品编码格式: 地块编码 2XX。

其中,地块编码依据《重点行业企业用地调查信息采集技术规定》要求确定,2 代表地下水样品,XX代表地下水采样点编号,从01开始编号。

(2) 地下水平行样编码

平行样编码格式: 地块编码 2XX-P

其中, 地块编 2XX 含义同上, P 为平行样代号。

地下水平行样编码需要经过手持智能终端二次编码,应将二次编码后的标签打 印并粘贴到平行样的样品瓶上。

3.3 监测因子

3.3.1 监测因子确定

根据《广东省揭阳市生态环境局发布关于加强土壤污染重点监管单位监管工作的通知》中相关要求,土壤监测因子包括《土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB36600)表 1 规定的 45 项基本项目及特征因子,地下水监测因子包括《地下水质量标准》(GB/T 14848)表 1 中感官性状及一般化学指标和毒理学指标共 35 项基本项目及特征因子; 再结合 4.3 章节特征污染物识别结论,确定本次污染排查中土壤监测因子确定为: 45 项基本项目+二噁英,地下水监测因子为: 35 项基本项目。

根据《全国土壤污染状况详查土壤样品分析测试方法技术规定》、企业各生产工艺污染因子及特征污染物分析,初步确定测试项目如下:

(1) 土壤样品检测指标(50项):

基本理化性质(2项): pH、含水率;

重金属(7项): 砷、镉、铬(六价)、铜、铅、汞、镍;

挥发性有机物(VOCs, 27 项): 四氯化碳、氯仿(三氯甲烷)、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯;

半挥发性有机物(SVOCs, 11 项): 硝基苯、苯胺、2-氯酚、多环芳烃类(苯并(a) 蒽、苯并(a) 芘、苯并(b) 荧蒽、苯并(k) 荧蒽、菌、二苯并[a,h]蒽、茚并(1,2,3-cd) 芘、萘)。

其他(3项):二噁英、锡、银。

(2) 地下水样品检测指标(35 项):

感官性状及一般化学指标(20项):色、嗅和味、浑浊度、肉眼可见物、pH、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、铜、锌、铝、挥发性酚类、阴离子表面活性剂、耗氧量、氨氮、硫化物、钠;

毒理学指标(15项):亚硝酸盐、硝酸盐、氰化物、氟化物、碘化物、汞、砷、硒、镉、铬(六价)、铅、三氯甲烷、四氯化碳、苯、甲苯;

(3) 企业土壤和地下水测试项目

测试项目见表 3.3-1。需要采一定比例的质控样。

表 3.3-1 地块土壤和地下水测试项目

点位	布点位置	常规项目	特征污染物	备注
AT1	单元 A 炉渣综合 利用车间外的绿 化带	土壤: 理化性质(2项): pH值、 含水率 重金属和无机物(7项): 砷、镉、	/	表层土
AT2	单元 A-炉渣综合 利用区域靠近沉 淀池处	各(六价)、铜、铅、汞、镍 络(六价)、铜、铅、汞、镍 挥发性有机物(27 项):四氯化 碳、氯仿、氯甲烷、1,1-二氯乙烷、	/	深层土,略 低于 6m
AS1	利用区域外停车 场区域	1,2-二氯乙烷、1,1-二氯乙烯、顺 -1,2-二氯乙烯、反-1,2-二氯乙烯、 二氯甲烷、1,2-二氯丙烷、1,1,1,2-	/	地下水监测点位
BT1	单元 B-堆场区域 西侧的裸露地地 块	四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、5,2,3-三氯丙烷、5,2,3-三氯丙烷、5,2,4	二噁英	二噁英只采表层土
BT2/BS1	单元 B-堆场区域	氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯半挥发性有机物(11项):硝基苯、苯胺、2-氯酚、苯并[a]蒽、苯并[a]芘、苯并[b]荧蒽、苯并[k]荧	/	地下水和 土壤监测 点,采样深 度应在监 测井水面 下 0.5m 以

11778	地块外部地下水 水流方向上游	蒽、屈、二苯并[a,h]蒽、茚并 [1,2,3-cd]芘、萘。 地下水:理化性质(1 项):水位 埋深 感官性状及一般化学指标(20 项):色、嗅和味、浑浊度、肉眼可见物、pH、总硬度、溶解性总固体、硫酸盐、氯化物、铁、锰、铜、锌、铝、挥发性酚类、阴离子表面活性剂、耗氧量、氨氮、硫化物、钠;毒理学指标(15 项):亚硝酸盐、硝酸盐、氰化物、氟化物、碘化物、汞、砷、硒、镉、铬(六价)、铅、汞、砷、硒、镉、铬(六价)、	/	下 一般情况 下采样深 度应在面 测井水面 下 0.5m 以 下
		汞、砷、硒、镉、铬(六价)、铅、 三氯甲烷、四氯化碳、苯、甲苯		

3.3.2 监测频次

土壤监测频率1天一次,监测1天;地下水监测频率1天一次,监测1天。

3.3.3 评价标准

土壤检测项目应满足《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 (GB 36600-2019)表 1、表 2 中第二类用地筛选值的要求,地下水检测项目应满足《地下水质量标准》(GB/T 14848-2017)III类水质标准要求。

第四章 现场采样和实验室分析

4.1 现场布点及点位调整情况

广东源生态环保工程有限公司委托广州市建环环保科技有限公司于2023年6月8日-6月9日对该项目进行现场钻探,广东信一检测技术股份有限公司于2023年6月8日-6月9日对该项目进行现场采样工作,7月12日对地下水进行补充采样,现场布点位置及点位数量与监测方案一致,没有发生变动。

4.2 土孔钻探与土壤采样

土壤采样与土壤钻孔取样同时进行,由监测单位技术人员负责现场土壤样品采集和保存工作。本次土壤的采样点位采用钻探采样,土孔钻探深度为 0~8 米,在本地块实际采样过程中,主要依据现场岩芯的实际情况进行采样深度的确定。采样过程照片见图 4.2-1。

根据采样点的设计位置,结合现场的实际可进入状况,在现场选择合适的位置 架设钻机。钻机就位后由现场工程师检查钻杆垂直度后方进行钻探。需进行深层土 壤采样点的采样深度初步设定为 0~8 米,土壤钻探利用螺旋开孔、冲击钻探方式进 行钻探,本次设计采样点均不需破开混凝土硬化地面,使用钻头以千斤锤撞击的方 式向下冲击钻孔。在进行第一个土壤取样孔的钻井工作之前,以及在两次钻孔之间, 钻探设备进行清洗,当同一钻孔在不同深度采样时,对钻探设备、取样装置进行清 洗,避免污染样品。

不同性质的目标污染物,采用不同的采样方法,土壤样品采集过程如下:

- (1) 现场记录:钻探过程中,将岩心按其深度摆放,记录不同深度土层的各项物理性质(如质地、颜色、气味等)。
- (2) 现场快筛:用快速筛查设备进行重金属和挥发性有机物的快速测定,根据现场分析结果确定采样位置和是否增加采样层次。
- (3) 挥发性有机物(VOCs)样品采集:挥发性有机物是沸点在 50~260℃之间,在标准温度和压力(20℃和 1 个大气压)下饱和蒸汽压超过 133.32Pa 的有机化

合物。由于 VOCs 样品的敏感性,取样时要严格按照取样规范进行操作,否则采集的样品很可能失去代表性。

用于检测挥发性有机物(VOCs)的土壤样品应用非扰动采样器采样,不允许进行均质化处理,也不得采集混合样。采样时应用非扰动采样器采集7个样品,其中采集3个不少于5g的土壤样品推入加有10mL甲醇(色谱级或农残级)保护剂的40mL棕色样品瓶内,采集3个不少于5g的土壤样品加入无甲醇的40mL棕色样品瓶内,以及采集一份土壤样品装满于100mL棕色样品瓶内。样品放置于保温箱内在4°C下保存,保存期限7天。

(4) 重金属和理化性质样品取样

用木铲刮去外层土壤,根据规定的采样深度采集土壤样品,采集样品量不小于 1kg,装入透明的食品级密封袋中用于测定土壤理化性质和重金属。土壤样品采集完成后,贴上标明编号等采样信息的标签,并做好现场记录。

表4.2-1 土壤采样点位信息表

检测类型	采样点位	经纬度	检测项目	采样时 间	检测频次
	AT1 (1个样品)	E: 116°29′52″ N: 23°39′24″	理化性质(2项): pH值、含水率	2023.06 08	1次
	AT2 E: 116°29′53″ 重金属和无机物(7 项): 砷、镉、 (1 个样品) N: 23°39′25″ 铬(六价)、铜、铅、汞、镍	2023.06 08	1次		
	BT1 (1 个样品)	E: 116°29′54″ N: 23°39′26″	氯仿、氯甲烷、1,1-二氯乙烷、1,2-二	00	1次
土壤	BT2/BS1 (1 个样品)		氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2,2-四氯乙烷、四氯乙烷、四氯乙烷、三氯乙烷、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯半挥发性有机物(11项):硝基苯、苯胺、2-氯酚、苯并[a]蒽、苯并[a]克、苯并[b]荧蒽、苯并[b]荧蒽、苯并[k]荧蒽、菌、二苯并[a,h]蒽、茚并[1,2,3-cd]芘、萘、二噁英	2023.06 08	1 次



AT2 重金属快筛

49

图 4.2-1 土壤采样过程照片

4.3 监测井安装与地下水采样

4.3.1 监测井安装

地下水监测井的建设及洗井根据《重点行业企业用地调查样品采集保存和流转技术规定(试行)》进行,采样井建设过程包括钻孔、下管、填充滤料、密封止水、井台构筑(长期监测井需要)、成井洗井、封井等步骤,具体按以下步骤进行:

(1) 钻孔

钻孔直径应至少大于井管直径50 mm。钻孔达到设定深度后进行钻孔掏洗,以清除钻孔中的泥浆和钻屑,然后静置2 h~3 h并记录静止水位。可根据实际回水情况适当缩短静置等待时间。

(2) 下管

下管前应校正孔深,按先后次序将并管逐根丈量、排列、编号、试扣,确保下 管深度和滤水管安装位置准确无误。

井管下放速度不宜太快,中途遇阻时可适当上下提动和转动井管,必要时应将 井管提出,清除孔内障碍后再下管。下管完成后,将其扶正、固定,井管应与钻孔 轴心重合。

(3)滤料填充

使用导砂管将滤料缓慢填充至管壁与孔壁中的环形空隙内,应沿着井管四周均匀填充,避免从单一方位填入,一边填充一边晃动井管,防止滤料填充时形成架桥或卡锁现象。

滤料填充过程应进行测量,确保滤料填充至设计高度。

(4) 密封止水

密封止水应从滤料层往上填充,直至距离地面50cm。若采用膨润土球作为止水材料,每填充10cm需向钻孔中均匀注入少量的清洁水,填充过程中应进行测量,确保止水材料填充至设计高度,静置待膨润土充分膨胀、水化和凝结(具体根据膨润土供应厂商建议时间调整),然后回填混凝土浆层。

若地下水埋深较浅,地下水采样井建设方式可根据实际情况调整,可适当减少 滤料层和回填层厚度,优先保证设置足够的止水层厚度,防止地面污染沿采样井渗 入。

(5) 井台构筑

若地下水采样井需建成长期监测井,则应设置保护性的井台构筑。井台构筑通常分为明显式和隐藏式井台,隐藏式井台与地面齐平,适用于路面等特殊位置。在产企业地下水采样井应建成长期监测井。

明显式井台地上部分井管长度应保留30 cm~50 cm, 井口用与井管同材质的管帽封堵, 地上部分的井管应采用管套保护(管套应选择强度较大且不宜损坏材质), 管套与井管之间注混凝土浆固定, 井台高度应不小于30cm。

井台应设置标示牌, 需注明采样井编号、负责人、联系方式等信息。

(6) 成井洗井

地下水采样井建成至少24 h后(待井内的填料得到充分养护、稳定后),才能进行洗井。

洗井时一般控制流速不超过3.8 L/min,成井洗井达标直观判断水质基本上达到水清砂净(即基本透明无色、无沉砂),同时监测pH值、电导率、浊度、水温等参数值达到稳定(连续三次监测数值浮动在±10%以内),或浊度小于50 NTU。避免使用大流量抽水或高气压气提的洗井设备,以免损坏滤水管和滤料层。

洗井过程要防止交叉污染,贝勒管洗井时应一井一管,气囊泵、潜水泵在洗井 前要清洗泵体和管线,清洗废水要收集处置,如遇特殊岩性(淤泥层、黏土层、亚 黏土层),多次井水检出浊度较高,浊度计显示检出上限,原则上洗井体积应达到 3~5倍滞水体积。

(7) 成井记录

成井后测量记录点位坐标及管口高程。

(8) 封井

采样完成后,非长期监测的采样井应进行封井。封井应从井底至地面下50 cm 全部用直径为20 mm~40 mm 的优质无污染的膨润土球封堵。

膨润土球一般采用提拉式填充,将直径小于井内径的硬质细管提前下入井中(根据现场情况尽量选择小直径细管),向细管与井壁的环形空间填充一定量的膨润土球,然后缓慢向上提管,反复抽提防止井下搭桥,确保膨润土球全部落入井中,再进行下一批次膨润土球的填充。

全部膨润土球填充完成后应静置24 h,测量膨润土填充高度,判断是否达到预 定封井高度,并于7天后再次检查封井情况,如发现塌陷应立即补填,直至符合规定 要求。

将井管高于地面部分进行切割,按照膨润土球填充的操作规程,从膨润土封层向上至地面注入混凝土浆进行封固。

4.3.2 地下水采样

地下水样品采集包括采样前洗井及现场采样两个部分,各监测因子采样要求安装《重点行业企业用地调查样品采集保存和流转技术规定(试行)》和及 相关技术规范进行。

4.3.2.1 采样前洗井要求

- (1) 采样前洗井应至少在成井洗井 48 h 后开始。
- (2) 采样前洗井应避免对井内水体产生气提、气曝等扰动。若选用气囊泵或低流量潜水泵,泵体进水口应置于水面下 1.0 m 左右,抽水速率应不大于 0.3 L/min,洗井过程应测定地下水位,确保水位下降小于 10cm。若洗井过程中水位下降超过 10 cm,则需要适当调低气囊泵或低流量潜水泵的洗井流速。

若采用贝勒管进行洗井,贝勒管汲水位置为井管底部,应控制贝勒管缓慢下降和上升,原则上洗井水体积应达到 3~5 倍滞水体积。

(3) 洗井前对 pH 计、溶解氧仪、电导率和氧化还原电位仪等检测仪器进行现场校正。

开始洗井时,以小流量抽水,记录抽水开始时间,同时洗井过程中每隔 5 分钟读取并记录 pH、温度(T)、电导率、溶解氧(DO)、氧化还原电位(ORP)及浊度,连续三次采样达到以下要求结束洗井:

- a) pH 变化范围为±0.1;
- b) 温度变化范围为±0.5℃;
- c) 电导率变化范围为±3%;
- d) DO 变化范围为±10%, 当 DO < 2.0 mg/L 时, 其变化范围为±0.2mg/L;
- e) ORP 变化范围±10 mV;
- f) 10NTU<浊度<50NTU时, 其变化范围应在±10%以内; 浊度<10NTU时, 其变化范围为±1.0NTU; 若含水层处于粉土或粘土地层时,连续多次洗井后的浊度>50NTU时,要求连续三次测量浊度变化值小于5NTU。
- (4) 若现场测试参数无法满足(3) 中的要求,或不具备现场测试仪器的,则 洗井水体积达到 3~5 倍采样井内水体积后即可进行采样。

(5) 采样前洗井过程中产生的废水,应统一收集处置。

4.3.2.2 地下水样品采集

- (1) 采样洗井达到要求后,测量并记录水位,若地下水水位变化小于 10cm,则可以立即采样;若地下水水位变化超过 10cm,应待地下水位再次稳定后采样,若地下水回补速度较慢,原则上应在洗井后 2h 内完成地下水采样。
- (2) 地下水样品采集应先采集用于检测 VOCs 的水样, 然后再采集用于检测其他水质指标的水样。

对于未添加保护剂的样品瓶,地下水采样前需用待采集水样润洗 2~3 次。

采集检测 VOCs 的水样时,优先采用气囊泵或低流量潜水泵,控制采样水流速度不高于 0.3L/min。使用低流量潜水泵采样时,应将采样管出水口靠近样品瓶中下部,使水样沿瓶壁缓缓流入瓶中,过程中避免出水口接触液面,直至在瓶口形成一向上弯月面,旋紧瓶盖,避免采样瓶中存在顶空和气泡。

使用贝勒管进行地下水样品采集时,应缓慢沉降或提升贝勒管。取出后,通过调节贝勒管下端出水阀或低流量控制器,使水样沿瓶壁缓缓流入瓶中,直至在瓶口形成一向上弯月面,旋紧瓶盖,避免采样瓶中存在顶空和气泡。

地下水装入样品瓶后,使用手持智能终端记录样品编码、采样日期和采样人员 等信息,打印后贴到样品瓶上。

地下水采集完成后,样品瓶应用泡沫塑料袋包裹,并立即放入现场装有冷冻蓝 冰的样品箱内保存。

- (3) 地下水平行样采集要求。地下水平行样应不少于地块总样品数的 10%,每个地块至少采集 1 份。
- (4)使用非一次性的地下水采样设备,在采样前后需对采样设备进行清洗,清洗过程中产生的废水,应集中收集处置。采用柴油发电机为地下水采集设备提供动力时,应将柴油机放置于采样井下风向较远的位置。
- (5) 地下水采样过程中应做好人员安全和健康防护,佩戴安全帽和一次性的个人防护用品(口罩、手套等),废弃的个人防护用品等垃圾应集中收集处置。

表4.3-1 地下水采样点位信息表

检测类 型	采样点 位	经纬度	检测项目	采样时 间	检测频 次
地下水	AS1	E: 116°29′55″ N: 23°39′24″	理化性质(1项):水位埋深 感官性状及一般化学指标(20项):	2023.07.12	1次

检测类 型	采样点 位	经纬度	检测项目	采样时 间	检测频 次
	BT2/BS1	E: 116°29'55" N: 23°39'26"	色、嗅和味、浑浊度、肉眼可见物、 pH、总硬度、溶解性总固体、硫酸盐、 氯化物、铁、锰、铜、锌、铝、挥发		1次
	DZS		性酚类、阴离子表面活性剂、耗氧量、 氨氮、硫化物、钠; 毒理学指标(15项):亚硝酸盐、硝 酸盐、氰化物、氟化物、碘化物、汞、 砷、硒、镉、铬(六价)、铅、三氯 甲烷、四氯化碳、苯、甲苯	2023.07.12	1次
备注		本报告所为	示的经纬度为参考值,由于定位方法可	可能存在误差	É 。

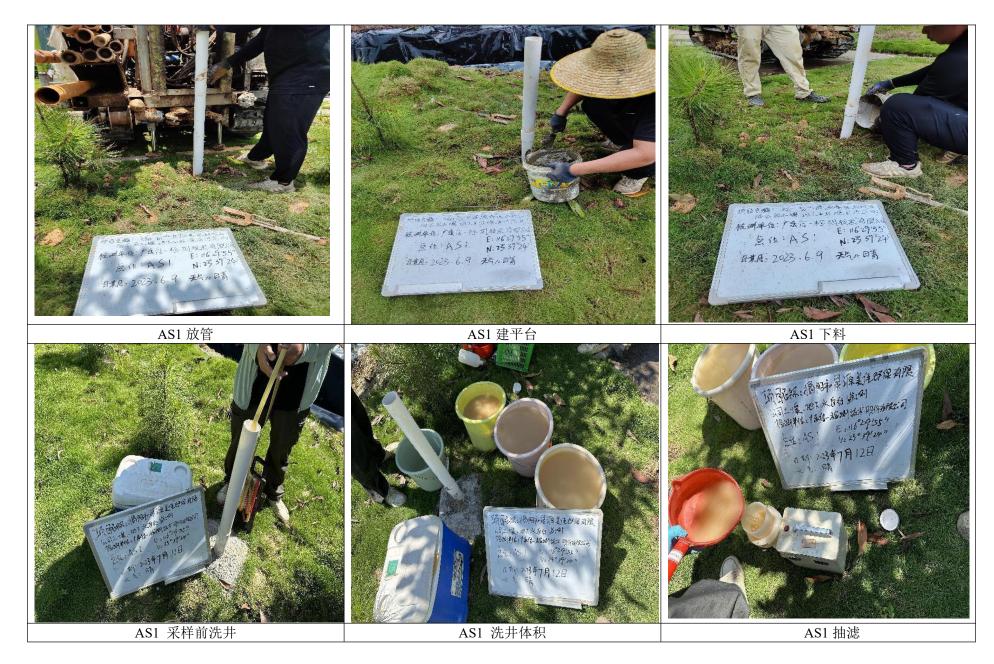


图 4.3-1 地下水采样照片

4.4 样品保存

土壤样品保存方法参照《土壤环境监测技术规范》(HJ/T166-2004)和全国土壤污染状况详查相关技术规定执行,地下水样品保存方法参照《地下水环境监测技术规范》(HJ/T164-2004)和《全国土壤污染状况详查地下水样品分析方法技术规定》执行。

样品保存包括现场暂存和流转保存两个主要环节,应遵循以下原则进行:

- (1)根据不同检测项目要求,应在采样前向样品瓶中添加一定量的保护剂,在 样品瓶标签上标注检测单位内控编号,并标注样品有效时间。
- (2)样品现场暂存。采样现场需配备样品保温箱,内置冰冻蓝冰。样品采集后应立即存放至保温箱内,样品采集当天不能寄送至实验室时,样品需用冷藏柜在 4℃温度下避光保存。
- (3)样品流转保存。样品应保存在有冰冻蓝冰的保温箱内寄送或运送到实验室, 样品的有效保存时间为从样品采集完成到分析测试结束。

4.5 样品流转

应严格按照《重点行业企业用地调查样品采集保存和流转技术规定(试行)》样品 流转的要求执行。

4.4.1 装运前核对

样品管理员和质量检查员负责样品装运前的核对,要求样品与采样记录单进行 逐个核对,检查无误后分类装箱。如果核对结果发现异常,应及时查明原因,由样 品管理员向组长进行报告并记录。

样品装运前,填写"样品运送单",包括样品名称、采样时间、样品介质、检测指标、检测方法和样品寄送人等信息,样品运送单用防水袋保护,随样品箱一同送 达样品检测单位。

样品装箱过程中,要用泡沫材料填充样品瓶和样品箱之间空隙。样品箱用密封 胶带打包。

4.4.2 样品运输

样品流转运输应保证样品完好并低温保存,采用适当的减震隔离措施,严防样

品瓶的破损、混淆或沾污,在保存时限内运送至样品检测单位。

样品运输应设置运输空白样进行运输过程的质量控制,一个样品运送批次设置一个运输空白样品。

4.4.3 样品接收

样品检测单位收到样品箱后,应立即检查样品箱是否有破损,按照样品运输单清点核实样品数量、样品瓶编号以及破损情况。若出现样品瓶缺少、破损或样品瓶标签无法辨识等重大问题,样品检测单位的实验室负责人应在"样品运送单"中"特别说明"栏中进行标注,并及时与采样工作组组长沟通。

上述工作完成后,样品检测单位的实验室负责人在纸版样品运送单上签字确认并拍照发给采样单位。样品运送单应作为样品检测报告的附件。

样品检测单位收到样品后,按照样品运送单要求,立即安排样品保存和检测。

4.6 实验室分析测试

土壤评价标准参考《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值。地下水评价标准参考《地下水质量标准(GB/T 14848-2017)》地下水质量III类标准限值。

土壤和地下水样品的分析测试方法原则上应尽量采用《全国土壤污染状况详查 土壤样品分析测试方法技术规定》、《全国土壤污染状况详查地下水样品分析测试 方法技术规定》、《土壤环境质量建设用地土壤污染风险管控标准(试行)》 (GB36600-2018)和《地下水质量标准》(GB/T14848-2017)中的推荐方法,相关方法应 纳入相关检测实验室资质认定范围;检测实验室也可选用其资质认定范围内的国际 标准、区域标准、国家标准及行业标准方法,但不得选用其他标准方法或实验室自 制方法。本地块土壤和地下水的测试方法可参照表 4.6-1 和表 4.6-2 选择。

检测项目	分析方法	分析仪器	检出限
pH 值	土壤 pH 值的测定 电位法 HJ 962-2018	PXSJ-216F 离子计	
水分	土壤 干物质和水分的测定 重量法 HJ 613-2011	YP502N 电子天平	
镉	土壤质量 铅、镉的测定石墨炉原子吸收分光光度法 GB/T 17141-1997	AA-6880F/AAC 原子 吸收分光光度计	0.01mg/kg

表 4.6-1 土壤测试方法列表

铅			10mg/kg
镍	土壤和沉积物 铜、锌、铅、镍、铬的 测定 火焰原子吸收分光光度法 HJ	TAS-990F 原子吸收分	3mg/kg
	侧足 欠陷原于吸收分元元度法 HJ 491-2019	光光度计	
铜 			1mg/kg
汞	土壤质量 总汞、总砷、总铅的测定 原子荧光法 第1部分: 土壤中总汞的测定 GB/T 22105.1-2008	AFS-8520 原子荧光光 度计	0.002mg/kg
砷	土壤质量 总汞、总砷、总铅的测定 原子荧光法 第2部分:土壤中总砷的测定 GB/T 22105.2-2008	AFS-8520 原子荧光光 度计	0.01mg/kg
六价铬	土壤和沉积物 六价铬的测定 碱溶液 提取-火焰原子吸收分光光度法 HJ 1082-2019	TAS-990F 原子吸收分 光光度计	0.5mg/kg
检测项目	分析方法	分析仪器	检出限
苯胺			0.01mg/kg
2-氯苯酚			0.06mg/kg
硝基苯			0.09mg/kg
萘			0.09mg/kg
苯并(a)蒽			0.1mg/kg
薜	土壤和沉积物 半挥发性有机物的测定 气相色谱-质谱法 HJ 834-2017	8860-5977B 气相色谱 质谱联用仪	0.1mg/kg
苯并(b) 荧蒽			0.2mg/kg
苯并(k)荧蒽			0.1mg/kg
苯并(a)芘			0.1mg/kg
茚并(1,2,3-cd) 芘			0.1mg/kg
二苯并(a,h)蒽			0.1mg/kg
氯甲烷			1.0μg/kg
氯乙烯			1.0μg/kg
1,1-二氯乙烯	土壤和沉积物 挥发性有机物的测定	 8890-5977B 气相色谱	1.0μg/kg
二氯甲烷	吹扫捕集/气相色谱-质谱法 HJ 605-2011	质谱联用仪	1.5μg/kg
反式-1,2-二氯乙 烯			1.4μg/kg
1,1-二氯乙烷			1.2µg/kg

	T		
顺式-1,2-二氯乙 烯			1.3µg/kg
氯仿			1.1μg/kg
1,1,1-三氯乙烷			1.3µg/kg
四氯化碳			1.3µg/kg
1,2-二氯乙烷			1.3µg/kg
苯			1.9µg/kg
三氯乙烯			1.2μg/kg
1,2-二氯丙烷			1.1µg/kg
甲苯			1.3µg/kg
检测项目	分析方法	分析仪器	检出限
1,1,2-三氯乙烷			1.2μg/kg
四氯乙烯			1.4µg/kg
氯苯			1.2μg/kg
1,1,1,2-四氯乙烷			1.2μg/kg
乙苯			1.2μg/kg
间,对-二甲苯			1.2μg/kg
邻-二甲苯			1.2μg/kg
苯乙烯			1.1µg/kg
1,1,2,2-四氯乙烷			1.2μg/kg
1,2,3-三氯丙烷			1.2μg/kg
1,4-二氯苯			1.5µg/kg
1,2-二氯苯			1.5µg/kg
锡	《危险废物鉴别标准 浸出毒性鉴别》 GB 5085.3-2007 附录 D 金属元素的 测定 火焰原子吸收光谱法	TAS-990F 原子吸收分 光光度计	0.8mg/L
银	《危险废物鉴别标准 浸出毒性鉴别》 GB 5085.3-2007 附录 C 金属元素的 测定 石墨炉原子吸收光谱法	AA-6880F/AAC 原子 吸收分光光度计	0.2μg/L
二噁英	《HJ 77.4-2008 土壤和沉积物二噁英 类的测定》同位素稀释高分辨气相色 谱-高分辨质谱法	高分辨气相色谱-高分 辨双聚焦磁质谱联用 仪	

备注:"一"暂无评价标准。

表 4.6-2 地下水测试方法列表

检测项目	分析方法	分析仪器	检出限
pH 值(现场测定)	水质 pH 值的测定 电极法 HJ 1147-2020	SX825 型 pH/mV/溶 解氧测量仪	
浊度	水质 浊度的测定 浊度计法 HJ 1075-2019	WZB-175 便携式浊 度计	0.3NTU
色度	地下水质分析方法 第 4 部分: 色度的测定 铂-钴标准比色法 DZ/T 0064.4-2021		5 度
臭和味	生活饮用水标准检验方法 感观性状和 物理指标 GB/T 5750.4-2006(3)		
肉眼可见物	生活饮用水标准检验方法 感观性状和 物理指标 GB/T 5750.4-2006(4)		
总硬度	水质 钙和镁总量的测定 EDTA 滴定法 GB/T 7477-1987	50mL 滴定管	5mg/L
溶解性总固体	生活饮用水标准检验方法 感观性状和 物理指标 GB/T 5750.4-2006(8)	BSA224S 电子天平	
硫酸盐	水质 硫酸盐的测定 铬酸钡分光光度法 (试行) HJ/T 342- 2007	722S 可见分光光度 计	8.0mg/L
氯化物	水质 氯化物的测定 硝酸银滴定法 GB/T 11896-1989	50mL 滴定管	10mg/L
铁	水质 铁、锰的测定 火焰原子吸收分光 光度法 GB/T 11911-1989	TAS-990F 原子吸收 分光光度计	0.03mg/L
锰			0.01mg/L
铜	水质 铜、锌、铅、镉的测定 原子吸收 分光光度法 GB/T 7475-1987	TAS-990F 原子吸收 分光光度计	0.05mg/L
锌			0.05mg/L
铝	生活饮用水标准检验方法 金属指标 GB/T 5750.6-2006(1)	722S 可见分光光度 计	0.008mg/L
挥发酚	水质 挥发酚的测定 4-氨基安替比林分 光光度法 HJ 503-2009	722S 可见分光光度 计	0.0003mg/L
阴离子表面活性 剂	水质 阴离子表面活性剂的测定 亚甲蓝 分光光度法 GB/T 7494-1987	T6 新世纪紫外可见 分光光度计	0.05mg/L
耗氧量	水质 高锰酸盐指数的测定 GB/T 11892-1989	50mL 滴定管	0.5mg/L
氨氮	水质 氨氮的测定 纳氏试剂分光光度法 HJ 535-2009	722S 可见分光光度 计	0.025mg/L
硫化物	水质 硫化物的测定 亚甲基蓝分光光度 法 HJ 1226-2021	722S 可见分光光度 计	0.01mg/L
钠	水质可溶性阳离子(Li ⁺ 、Na ⁺ 、NH ₄ ⁺ 、 K ⁺ 、Ca ²⁺ 、Mg ²⁺)的测定离子色谱法 HJ 812-2016	CIC-D120 离子色谱 仪	0.02mg/L
检测项目	分析方法	分析仪器	检出限

亚硝酸盐氮	水质 亚硝酸盐氮的测定 分光光度法 GB/T 7493-1987	722S 可见分光光度 计	0.003mg/L
硝酸盐氮	水质 硝酸盐氮的测定 酚二磺酸分光光 度法 GB/T 7480-1987	722S 可见分光光度 计	0.02mg/L
氰化物	地下水质分析方法第 52 部分: 氰化物的测定吡啶-吡唑啉酮分光光度法 DZ/T 0064.52-2021	722S 可见分光光度 计	0.002mg/L
氟化物	水质 氟化物的测定 氟试剂分光光度法 HJ 488-2009	722S 可见分光光度 计	0.02mg/L
碘化物	水质 碘化物的测定 离子色谱法 HJ 778-2015	CIC-D120 离子色谱 仪	0.002mg/L
汞			$0.04 \mu g/L$
砷	水质 汞、砷、硒、铋和锑的测定 原子 荧光法 HJ 694-2014	AFS-8520 原子荧光 光度计	0.3μg/L
硒			0.4μg/L
镉	《水和废水监测分析方法》(第四版增补版)国家环境保护总局 2002年 石墨炉原子吸收法测定镉、铜和铅(B)3.4.7(4)	AA-6880F/AAC 原 子吸收分光光度计	0.1μg/L
六价铬	地下水质分析方法 第 17 部分: 总铬和 六价铬量的测定 二苯碳酰二肼分光光 度法 DZ/T 0064.17-2021	722S 可见分光光度 计	0.004mg/L
铅	《水和废水监测分析方法》(第四版增补版)国家环境保护总局 2002 年 石墨炉原子吸收法(B)3.4.16(5)	AA-6880F/AAC 原 子吸收分光光度计	1μg/L
三氯甲烷			1.4μg/L
四氯化碳	水质 挥发性有机物的测定 吹扫捕集/	8890-5977B 气相色谱质谱联用	1.5μg/L
苯	气相色谱-质谱法 HJ 639-2012	仪	1.4μg/L
甲苯			1.4μg/L

备注: "—"暂无评价标准。

4.7 质量保证及控制质量

4.7.1 质量保证措施

采样调查质量保证与质量控制,主要依据《全国土壤污染状况详查总体方案》《重点行业企业用地调查样品流转和保存技术规定(试行)》《重点行业企业用地调查质量保证与质量控制技术规定(试行)》《重点行业企业用地土壤污染状况调查样品采集保存和流转质量控制工作手册》等文件要求。采样质控工作主要包括采样质量检查、采样单位和质控单位工作质量评估。

4.7.1.1 现场采样质量控制与保证

本地块调查过程中质量控制实施流程审核要点及注意事项如表 4.71-1 所示,明确各过程质量控制人员及职责。质量控制阶段包括方案编制、现场采样、样品采样/保存/流转、实验室检测分析等阶段。

质量检查包括资料检查和现场检查两种方式,通过检查判断采样工作中是否存在质量问题,并确定相应的问题处理方式。具体要求参照《重点行业企业用地调查质量保证与质量控制技术规定(试行)》等文件要求执行。

质控阶段	职责分工	审核要点	注意事项
方案编制	方案内审	污染识别,	污染识别必须考虑信息采集阶段识别 出的特征污染物;所有点位必须有土地 使用权人现场确认
现场采样	负责现场工作的内部 审核		采样深度需根据企业实际地层情况进 行现场调整
样品采集/保存 /流转	负责样品采集/保存/ 流转的质量控制	单等信	样品保存流转过程中必须保证样品的 检测时效性;样品检 测前必须核对清楚样品数量
实验室分析	负责实验室检测分析 的质量控制	样品检测时效性,检测 方法规范性,检测数据 准确性	样品分析必须在样品检测时效性内进 行

表 4.7-1 质控人员及职责分工

4.7.1.2 实验室质量控制与保证

(一) 实验室内部质量控制

(1) 空白试验

每批次样品分析时,应进行空白试验。分析测试方法有规定的,按分析测试方法的规定进行;分析测试方法无规定时,要求每批样品或每 20 个样品应至少做 1 次空白试验。

空白样品分析测试结果一般应低于方法检出限。若空白样品分析测试结果低于方法检出限,可忽略不计;若空白样品分析测试结果略高于方法检出限但比较稳定,可进行多次重复试验,计算空白样品分析测试结果平均值并从样品分析测试结果中扣除;若空白样品分析测试结果明显超过正常值,实验室应查找原因并采取适当的纠正和预防措施,并重新对样品进行分析测试。

(2) 定量校准

1)标准物质

分析仪器校准应首先选用有证标准物质。当没有有证标准物质时,也可用纯度较高(一般不低于 98%)、性质稳定的化学试剂直接配制仪器校准用标准溶液。

2) 校准曲线

采用校准曲线法进行定量分析时,一般应至少使用 5 个浓度梯度的标准溶液(除空白外),覆盖被测样品的浓度范围,且最低点浓度应接近方法测定下限的水平。分析测试方法有规定时,按分析测试方法的规定进行;分析测试方法无规定时,校准曲线相关系数要求为 r>0.999。

(3) 仪器稳定性检查

连续进样分析过程中,每分析测试 20 个样品,测定了一次校准曲线中间浓度点,确认分析仪器校准曲线是否发生显著变化。分析测试方法有规定的,按分析测试方法的规定进行;分析测试方法无规定时,无机检测项目分析测试相对偏差控制在 10%以内,有机检测项目分析测试相对偏差控制在 20%以内,超过此范围时需要查明原因,重新绘制校准曲线,并重新分析测试该批次全部样品。

(4) 精密度控制

每批次样品分析时,每个检测项目(除挥发性有机物外)均须做平行双样分析。 在每批次分析样品中,应随机抽取 5%的样品进行平行双样分析;当批次样品数<20 时,应至少随机抽取 1 个样品进行平行双样分析。

平行双样分析一般应由本实验室质量管理人员将平行双样以密码编入分析样品中交检测人员进行分析测试。

若平行双样测定值(A,B)的相对偏差(RD)在允许范围内,则该平行双样的精密度控制为合格,否则为不合格。RD 计算公式如下:

$$RD(\%) = \frac{|A-B|}{A+R} \times 100$$

平行双样分析测试合格率按每批同类型样品中单个检测项目进行统计,计算公式如下:

合格率(%) =
$$\frac{\text{合格样品数}}{\text{总分析样品数}} \times 100$$

对平行双样分析测试合格率要求应达到 95%。当合格率小于 95%时,应查明产生不合格结果的原因,采取适当的纠正和预防措施。除对不合格结果重新分析测试外,应再增加 5%~15%的平行双样分析比例,直至总合格率达到 95%。

(5) 准确度控制

使用有证标准物质。

- 1)当具备与被测土壤或地下水样品基体相同或类似的有证标准物质时,应在每 批次样品分析时同步均匀插入与被测样品含量水平相当的有证标准物质样品进行分 析测试。每批次同类型分析样品要求按样品数 5%的比例插入标准物质样品;当批次 分析样品数<20 时,应至少插入1个标准物质样品。
- 2)将标准物质样品的分析测试结果(x)与标准物质认定值(或标准值)(μ)进行比较,计算相对误差(RE)。RE 计算公式如下:

$$RE(\%) = \frac{x-\mu}{\mu} \times 100$$

- 3)若 RE 在允许范围内,则对该标准物质样品分析测试的准确度控制为合格, 否则为不合格。
- 4)对有证标准物质样品分析测试合格率要求应达到 100%。当出现不合格结果时,应查明其原因,采取适当的纠正和预防措施,并对该标准物质样品及与之关联的详查送检样品重新进行分析测试。

(6) 加标回收率试验

- 1)当没有合适的土壤或地下水基体有证标准物质时,应采用基体加标回收率试验对准确度进行控制。每批次同类型分析样品中, 应随机抽取 5%的样品进行加标回收率试验; 当批次分析样品数<20 时,应至少随机抽取 1 个样品进行加标回收率试验。此外,在进行有机污染物样品分析时,最好能进行替代物加标回收率试验。
- 2)基体加标和替代物加标回收率试验应在样品前处理之前加标,加标样品与试样应在相同的前处理和分析条件下进行分析测试。加标量可视被测组分含量而定,含量高的可加入被测组分含量的 0.5~1.0 倍,含量低的可加 2~3 倍,但加标后被测组分的总量不得超出分析测试方法的测定上限。

表 4.7-2 土壤样品中主要检测项目分析测试精密度和准确度允许范围

检测项目	含量范围	精智	密度	准确度	
	(mg/kg)	室内相对偏差 (%)			相对误差 (%)
	< 0.1	35	40	75~110	±40
总镉	$0.1 \sim 0.4$	30	35	85~110	±35
	>0.4	25	30	90~105	±30
总汞	< 0.1	35	40	75~110	±40

	0.1~0.4	30	35	85~110	±35			
	>0.4	25	30	90~105	±30			
	<10	20	30	85~105	±30			
总砷	10~20	15	20	90~105	±20			
	>20	10	15	90~105	±15			
	<20	20	25	85~105	±25			
总铜	20~30	15	20	90~105	±20			
	>30	10	15	90~105	±15			
	<20	25	30	80~110	±30			
总铅	20~40	20	25	85~110	±25			
	>40	15	20	90~105	±20			
	< 50	20	25	85~110	±25			
总铬	50~90	15	20	85~110	±20			
	>90	10	15	90~105	±15			
	< 50	20	25	85~110	±25			
总锌	50~90	15	20	85~110	±20			
	>90	10	15	90~105	±15			
总镍	<20	20	25	80~110	±25			
	20~40	15	20	85~110	±20			
	>40	10	15	90~105	±15			
I DE LA CONTRACTOR DE L								

表 4.7-3 地下水样品中主要检测项目分析测试精密度和准确度允许范围

检测项目	含量范围 (mg/L)			准 确 度		
	, g _ ,	室内相对偏差(%)	室间相对偏 差(%)	加标回收率 (%)	相对误差 (%)	
总镉	<0.005 0.005~0.1	15 10	20 15	85~115 90~110	±15 ±10	
	>0.1	8	10	95~115	±10	
总汞	<0.001 $0.001 \sim 0.005$ >0.005	30 20 15	40 25 20	$85 \sim 115$ $90 \sim 110$ $90 \sim 110$	±20 ±15 ±15	
总砷	<0.05 ≥0.05	15 10	25 15	85~115 90~110	±20 ±15	
总铜	<0.1 0.1~1.0 >1.0	15 10 8	20 15 10	$85 \sim 115$ $90 \sim 110$ $95 \sim 105$	±15 ±10 ±10	
总铅	<0.05 0.05~1.0 >1.0	15 10 8	20 15 10	85~115 90~110 95~105	±15 ±10 ±10	
六价铬	<0.01 0.01~1.0 >1.0	15 10 5	10 15		±15 ±10 ±10	
总锌	<0.05 0.05~1.0 >1.0	20 15 10	30 20 15	85~120 90~110 95~105	±15 ±10 ±10	
氟化物	<1.0 ≥1.0	10 8	15 10	90~110 95~105	±15 ±10	

	< 0.05	20	25	85~115	±20
总氰化物	$0.05 \sim 0.5$	15	20	90~110	±15
	>0.5	10	15	90~110	±15

表 4.7-4 土壤样品中其他检测项目分析测试精密度与准确度允许范围

检测项目	含量范围	精密度相对偏差(%)	准确度加标回收率(%)	适用的分析方法
无机元素	≤10MDL >10MDL	30 20	80~120 90~110	AAS、ICP-AES、 ICP-MS
挥发性有机物	≤10MDL >10MDL	50 25	70~130	GC、GC-MSD
半挥发性有机物	≤10MDL >10MDL	50 30	60~140	GC、GC-MSD
难挥发性有机物	≤10MDL >10MDL	50 30	60~140	GC-MSD

- 注: (1) MDL—方法检出限; AAS—原子吸收光谱法; ICP-AES—电感耦合等离子体发射光谱法; ICP-MS—电感耦合等离子体质谱法; GC—气相色谱法; GC-MSD—气相色谱质谱法。
- (2) 本表为一般性要求,凡在《全国土壤污染状况详查土壤样品分析测试方法技术规定》中有明确要求的检测项目,执行分析方法技术规定的有关要求。

表 4.7-5 地下水样品中其他检测项目分析测试精密度与准确度允许范围

检测项目	含量范围	精密度 相对偏差(%)	准确度 加标回收率(%)	适用的分析方法	
	:10) FDT		加你回忆华(70)		
无机元素	≤10MDL	30	70~130	AAS、ICP-AES、	
	>10MDL	20	/0 130	ICP-MS	
挥发性有机物	≤10MDL	50	70~130	HS/PT-GC、	
1年及1年70.40	>10MDL	30	70, ~ 130	HS/PT-GC-MSD	
半挥发性有机物	≤10MDL	50	60~130	GC、GC-MSD	
干拌及性有机物	>10MDL	25	00, 130	GC, GC-MSD	
难挥发性有机物	≤10MDL	50	60~130	CC MCD	
/性1千人/ 注行/机初	>10MDL	25	00, ~130	GC-MSD	

注: MDL—方法检出限; AAS—原子吸收光谱法; ICP-AES—电感耦合等离子体发射光谱法; ICP-MS—电感耦合等离子体质谱法; HS/PT-GC—顶空/吹扫捕集-气相色谱法; HS/PT-GC-MSD—顶空/吹扫捕集-气相色谱质谱法; GC—气相色谱法; GC-MSD—气相色谱质谱法

- 3) 若基体加标回收率在规定的允许范围内,则该加标回收率试验样品的准确度控制为合格,否则为不合格。土壤和地下水样品中主要检测项目基体加标回收率允许范围见表 4.7-2 和表 4.7-3 土壤和地下水样品中其他检测项目基体加标回收率允许范围见表 4.7-4 和表 4.7-5。
- 4)对基体加标回收率试验结果合格率的要求应达到 100%。当出现不合格结果时,应查明其原因,采取适当的纠正和预防措施,并对该批次样品重新进行分析测试。

(7) 分析测试数据记录与审核

检测实验室应保证分析测试数据的完整性,确保全面、客观地反映分析测试结果,不得选择性地舍弃数据,人为干预分析测试结果。

检测人员应对原始数据和报告数据进行校核。对发现的可疑报告数据,应与样

品分析测试原始记录进行校对。

分析测试原始记录应有检测人员和审核人员的签名。检测人员负责填写原始记录; 审核人员应检查数据记录是否完整、抄写或录入计算机时是否有误、数据是否异常等,并考虑以下因素: 分析方法、分析条件、数据的有效位数、数据计算和处理过程、法定计量单位和内部质量控制数据等。

审核人员应对数据的准确性、逻辑性、可比性和合理性进行审核。

(二) 实验室外部质量控制

企业调查主要通过密码平行样品在实验室内分析测试比对,监控实验室样品分析测试过程的质量。必要时,采用飞行检查、留样复检等其他外部质量控制措施。检测实验室应按相关技术规定要求妥善保存已完成检测的留存样品或有机样品提取液。

实验室内分析测试比对结果应根据平行双样的相对偏差进行质量评价,在允许范围(见表 4.7-4 和表 4.7-5)内为可接受结果,否则为不合格结果。按合同任务批次统计,土壤样品和地下水样品实验室内密码平行样品累积检测质量合格率均应达到 90%。

质量保证和质量控制工作参照《重点行业企业用地调查质量保证与质量控制技术规定》相关要求执行。质控样分析结果不合格时,应查找原因,并将同批样品重新分析。

第五章 监测结果与评价

5.1 土壤自行监测结果分析

5.1.1 土壤筛选值的确定

本次监测采用《土壤环境质量建设用地土壤污染风险管控标准(试行)》 (GB36600-2018)作为土壤污染风险筛选依据,将其中各类污染物的风险筛选 值作为判定该污染物在本次监测区域内是否超标的标准值。如果调查结果未超 过风险筛选值,则污染指标对人体的健康风险可以忽略,无需进一步开展土壤 污染详细调查。若监测结果超过筛选值,需对该厂区展开土壤污染详细调查和 风险评估。

该标准将需要开展土壤污染调查的场地依据土地利用方式分为两类:第一类用地包括 GB50137 规定的城市建设用地中的居住用地(R),公共管理与公共服务用地中的中小学用地(A33),医疗卫生用地(A5)和社会福利设施用地(A6),以及公园绿地(G1)中的社区公园或儿童公园用地等。第二类用地包括 GB 50137规定的城市建设用地中的工业用地(M),物流仓储用地(W),商业服务业设施用地(B),道路与交通设施用地(S),公用设施用地(U),公共管理与公共服务用地(A33、A5、A6 除外),以及绿地与广场用地(G)(G1 中的社区公园或儿童公园用地除外)等。

表 5.1-1 建设用地土壤污染风险筛选值

测试项目	土壤污染风险筛选值
砷	60mg/kg
镉	65 mg/kg
镍	900 mg/kg
铅	800 mg/kg
铜	18000mg/kg
汞	38 mg/kg
银	
锡	_
锌	_
铬	
六价铬	5.7 mg/kg
四氯化碳	2.8mg/kg
氯仿	0.9mg/kg
氯甲烷	37 mg/kg

测试项目	土壤污染风险筛选值
1,1-二氯乙烷	9 mg/kg
1,2-二氯乙烷	5 mg/kg
1,1-二氯乙烯	66 mg/kg
顺-1,2 -二氯乙烯	596 mg/kg
反-1,2 -二氯乙烯	54 mg/kg
二氯甲烷	616 mg/kg
/1,2-二氯丙烷	5 mg/kg
1,1,1,2-四氯乙烷	10 mg/kg
1,1,2,2-四氯乙烷	6.8 mg/kg
四氯乙烯	53 mg/kg
1,1,1-三氯乙烷	840 mg/kg
1,1,2-三氯乙烷	2.8 mg/kg
三氯乙烯	2.8 mg/kg
1,2,3-三氯丙烷	0.5 mg/kg
氯乙烯	0.43 mg/kg
苯	4mg/kg
氯苯	270mg/kg
1,2-二氯苯	560 mg/kg
1,4-二氯苯	20 mg/kg
乙苯	28 mg/kg
苯乙烯	1290 mg/kg
甲苯	1200 mg/kg
间二甲苯+对二甲苯	570 mg/kg
邻二甲苯	640 mg/kg
硝基苯	76 mg/kg
苯胺	260 mg/kg
2-氯酚	2256 mg/kg
苯并[a]蒽	15 mg/kg
苯并[a]芘	1.5 mg/kg
苯并[b]荧蒽	15 mg/kg
苯并[k]荧蒽	151 mg/kg
菌	1293 mg/kg
二苯并[a, h]蒽	1.5 mg/kg
茚并[1,2,3-cd]芘	15mg/kg
萘	70mg/kg
氰化物	135 mg/kg
氟化物	_
pH 值	
水分	

备注: "一"暂无评价标准。

5.1.2 土壤监测结果

广东源生态环保工程有限公司委托广州市建环环保科技有限公司于 2023 年 6 月 8 日-6 月 9 日对该项目进行现场钻探,广东信一检测技术股份有限公司于 2023 年 6 月 8 日-6 月 9 日对该项目进行现场采样工作,检测项目见表 5.1-2,监测结果如表 5.1-3 所示:

表5.1-2 土壤检测项目、分层采样信息

		-2011 =		
点位编号	采 样 位 置 (m)	样品性状	检测项目	采样日期
AT1	0.2~0.3(0.2)	黄、砂土		
	0~0.2 (0.1)	浅棕、砂壤土		
	1.7~1.9(1.7)	浅棕、砂壤土	理化性质、重金属和无 机物、半挥发性有机物	
AT2	3.0~3.2(3.1)	浅棕、砂壤土	(SVOCs)、挥发性有机物(SVOCs)、挥发性有机物(VOCs)、其他	2023.6.8
	4.7~5.0(4.7)	黄棕、砂土	项	
	6.6~7.0(6.7)	黄棕、砂土		
BT1	0.2~0.3(0.2)	黄、砂壤土		
	0~0.3 (0.1)	栗、砂土	理化性质、重金属和无 机物、半挥发性有机物	
BT2	1.7~1.8(1.7)	栗、砂土	(SVOCs)、挥发性有 机物(VOCs)、其他 项	2023.6.8

- 备注: 1、理化性质: pH 值、水分;
 - 2、重金属和无机物: 砷、镉、铜、铅、汞、镍、六价铬;
- **3、半挥发性有机物(SVOCs):** 硝基苯、苯胺、2-氯苯酚、苯并(a)蒽、苯并(a)芘、苯并(b)荧蒽、苯并(k)荧蒽、菌、二苯并(a,h)蒽、茚并(1,2,3-cd)芘、萘;
- **4、挥发性有机物(VOCs):** 四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、顺-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,1,2-四氯乙烷、1,1,2-四氯乙烷、四氯乙烯、1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、乙苯、苯乙烯、甲苯、间二甲苯+对二甲苯、邻二甲苯;
 - 5、其他项: 锡、银、二噁英

括号内为挥发性有机物的采样位置:

- **6、钻孔深度, 采样个数: AT1、AT2、BT1、BT2** 钻孔深度为 0~8m, 各采 1 个样;
- 7、二噁英为分包项目,分包方为江苏全威检测有限公司;

表 5.1-3 土壤检测结果

	次 5.1 6 工 來 医 以 和 水								
检测点位			AT1	AT1 AT2					
		V //		采样深度(m)及检测结果					标准限值
检测项	页目	单位	0.2~0.3	0~0.2	1.7~1.9	3.0~3.2	4.7~5.0	6.6~7.0	
		(0.2)	(0.1)	(1.7)	(3.1)	(4.7)	(6.7)		
理化性质	pH 值	无量 纲	5.83	5.92	6.43	5.24	4.95	5.10	/
在化丘灰	水分	%	24.3	21.7	17.8	19.7	13.2	12.6	/
重金属和无	镉	mg/kg	0.02	0.16	0.06	0.09	0.10	0.04	65
机物	铅	mg/kg	274	144	134	195	181	128	800

	镍	mg/kg	12	25	20	21	32	6	900
	铜	mg/kg	2	35	9	44	62	26	18000
	汞	mg/kg	0.018	0.042	0.041	0.038	0.011	0.006	8
	砷	mg/kg	3.78	7.72	10.9	7.37	4.54	4.34	60
	六价铬	mg/kg	ND	ND	ND	ND	ND	ND	5.7
	氯甲烷	mg/kg	ND	ND	ND	ND	ND	ND	37
	氯乙烯	mg/kg	ND	ND	ND	ND	ND	ND	0.43
	1,1-二氯 乙烯	mg/kg	ND	ND	ND	ND	ND	ND	66
	二氯甲烷	mg/kg	ND	ND	ND	ND	ND	ND	616
	反式-1,2- 二氯乙烯	mg/kg	ND	ND	ND	ND	ND	ND	54
	1,1-二氯 乙烷	mg/kg	ND	ND	ND	ND	ND	ND	9
	顺式-1,2- 二氯乙烯	mg/kg	ND	ND	ND	ND	ND	ND	596
挥发性有机物(VOCs)	氯仿	mg/kg	ND	ND	ND	ND	ND	ND	0.9
	1,1,1-三 氯乙烷	mg/kg	ND	ND	ND	ND	ND	ND	840
	四氯化碳	mg/kg	ND	ND	ND	ND	ND	ND	2.8
	1,2-二氯 乙烷	mg/kg	ND	ND	ND	ND	ND	ND	5
	苯	mg/kg	ND	ND	ND	ND	ND	ND	4
	三氯乙烯	mg/kg	ND	ND	ND	ND	ND	ND	2.8
	1,2-二氯 丙烷	mg/kg	ND	ND	ND	ND	ND	ND	5
	甲苯	mg/kg	ND	ND	ND	ND	ND	ND	1200
	1,1,2-三 氯乙烷	mg/kg	ND	ND	ND	ND	ND	ND	2.8
	四氯乙烯	mg/kg	ND	ND	ND	ND	ND	ND	53
	氯苯	mg/kg	ND	ND	ND	ND	ND	ND	270
挥发性有机 物(VOCs)	1,1,1,2-四 氯乙烷	mg/kg	ND	ND	ND	ND	ND	ND	10
	乙苯	mg/kg	ND	ND	ND	ND	ND	ND	28
	间,对-二 甲苯	mg/kg	ND	ND	ND	ND	ND	ND	570
	邻-二甲 苯	mg/kg	ND	ND	ND	ND	ND	ND	640

	苯乙烯	mg/kg	ND	ND	ND	ND	ND	ND	1290
	1,1,2,2-四 氯乙烷	mg/kg	ND	ND	ND	ND	ND	ND	6.8
	1,2,3-三 氯丙烷	mg/kg	ND	ND	ND	ND	ND	ND	0.5
	1,4-二氯 苯	mg/kg	ND	ND	ND	ND	ND	ND	20
	1,2-二氯 苯	mg/kg	ND	ND	ND	ND	ND	ND	560
	苯胺	mg/kg	ND	ND	ND	ND	ND	ND	260
	2-氯苯酚	mg/kg	ND	ND	ND	ND	ND	ND	2256
	硝基苯	mg/kg	ND	ND	ND	ND	ND	ND	76
	萘	mg/kg	ND	ND	ND	ND	ND	ND	70
	苯并(a)蒽	mg/kg	ND	ND	ND	ND	ND	ND	15
半挥发性有	薜	mg/kg	ND	ND	ND	ND	ND	ND	1293
机物 (SVOCs)	苯并(b) 荧蒽	mg/kg	ND	ND	ND	ND	ND	ND	15
	苯并(k) 荧蒽	mg/kg	ND	ND	ND	ND	ND	ND	151
	苯并(a)芘	mg/kg	ND	ND	ND	ND	ND	ND	1.5
	茚并 (1,2,3-cd) 芘	mg/kg	ND	ND	ND	ND	ND	ND	15
	二苯并 (a,h)蒽	mg/kg	ND	ND	ND	ND	ND	ND	1.5
其他项	锡	mg/L	2.6	4.0	5.0	5.4	5.1	4.2	/
八 他坝	银	μg/L	0.6	0.5	0.6	0.6	0.9	0.3	/

备注: "ND"表示小于检出限的结果,检出限见表 4.6-1 土壤检测项目及检测信息一览表。

检	测点位		BT1	В		
检测项	fi 🗆	单位	采样	深度(m)及检测	标准限值	
1997年	ΚЫ	半世	0.2~0.3 (0.2)	0~0.3 (0.1)		
理化性质	pH 值	无量 纲	7.81	5.62	6.36	/
- 生化丘灰	水分	%	20.1	21.8	20.0	/
	镉	mg/kg	0.41	0.10	0.04	65
重金属和无 机物	铅	mg/kg	226	142	155	800
	镍	mg/kg	43	18	10	900

	铜	mg/kg	108	21	12	18000
	汞	mg/kg	0.046	0.016	0.013	8
	砷	mg/kg	18.7	7.25	7.64	60
	六价铬	mg/kg	ND	ND	ND	5.7
	氯甲烷	mg/kg	ND	ND	ND	37
	氯乙烯	mg/kg	ND	ND	ND	0.43
	1,1-二氯 乙烯	mg/kg	ND	ND	ND	66
	二氯甲烷	mg/kg	ND	ND	ND	616
	反式-1,2- 二氯乙烯	mg/kg	ND	ND	ND	54
	1,1-二氯 乙烷	mg/kg	ND	ND	ND	9
	顺式-1,2- 二氯乙烯	mg/kg	ND	ND	ND	596
挥发性有机 物(VOCs)	氯仿	mg/kg	ND	ND	ND	0.9
	1,1,1-三 氯乙烷	mg/kg	ND	ND	ND	840
	四氯化碳	mg/kg	ND	ND	ND	2.8
	1,2-二氯 乙烷	mg/kg	ND	ND	ND	5
	苯	mg/kg	ND	ND	ND	4
	三氯乙烯	mg/kg	ND	ND	ND	2.8
	1,2-二氯 丙烷	mg/kg	ND	ND	ND	5
	甲苯	mg/kg	ND	ND	ND	1200
	1,1,2-三 氯乙烷	mg/kg	ND	ND	ND	2.8
	四氯乙烯	mg/kg	ND	ND	ND	53
	氯苯	mg/kg	ND	ND	ND	270
挥发性有机 物(VOCs)	1,1,1,2-四 氯乙烷	mg/kg	ND	ND	ND	10
,,	乙苯	mg/kg	ND	ND	ND	28
	间,对-二 甲苯	mg/kg	ND	ND	ND	570
	邻-二甲	mg/kg	ND	ND	ND	640

	苯乙烯	mg/kg	ND	ND	ND	1290
	1,1,2,2-四 氯乙烷	mg/kg	ND	ND	ND	6.8
	1,2,3-三 氯丙烷	mg/kg	ND	ND	ND	0.5
	1,4-二氯 苯	mg/kg	ND	ND	ND	20
	1,2-二氯 苯	mg/kg	ND	ND	ND	560
	苯胺	mg/kg	ND	ND	ND	260
	2-氯苯酚	mg/kg	ND	ND	ND	2256
	硝基苯	mg/kg	ND	ND	ND	76
	萘	mg/kg	ND	ND	ND	70
	苯并(a)蒽	mg/kg	ND	ND	ND	15
半挥发性有	崫	mg/kg	ND	ND	ND	1293
机物 (SVOCs)	苯并(b) 荧蒽	mg/kg	ND	ND	ND	15
	苯并(k) 荧蒽	mg/kg	ND	ND	ND	151
	苯并(a)芘	mg/kg	ND	ND	ND	1.5
	茚并 (1,2,3-cd) 芘	mg/kg	ND	ND	ND	15
	二苯并 (a,h)蒽	mg/kg	ND	ND	ND	1.5
	锡	mg/L	3.1	2.2	3.4	/
其他项	银	μg/L	1.7	0.5	1.2	/
各注: "ND"	二噁英	ng TEQ/ kg	9.8	/	/	1×10 ⁻⁵

|备注: "ND"表示小于检出限的结果。

广东信一检测技术股份有限公司于 2023 年 6 月 13 日委托江西全威检测有限公司派人对 BT1 点位的土壤进行二噁英类检测,样品检测点位如表 5.1-3 所示,分析统计结果如表 5.1-4~5.1-5 所示:

表 5.1-4 BT1 二噁英检测点位表

(采样) 样品编号	样品描述	检测浓度(ng-TEQ/kg)
20230317-1	BT1 土壤 (E: 116°29′54″; N: 23°39′26″)	9.8

表 5.1-5 BT1 二噁英点位检测结果一览表

	样品信息	∄:	
样品类型	土壤	样品编号	20230317-1

样。	品名称	土壤 (T	TR202306009 03	104)	样品接收	日期		2023-06- 15
样。	品状态		棕色砂壤土		样品称样	量(g)		5.02
			样品检出限	金出限 实测质量浓度			毒性当量(TEQ)质量浓度	
	二噁英类	ŧ	ng/ kg		(w) g/ kg	1	I-TEF	ng TEQ /kg
	2270	TACDD					1	0.60
名	2,3,7,8-		0.02		0.60			
氯	1,2,3,7,8	-P5CDD	0.1		2.1		0.5	1.0
多氯代二	1,2,3,4,7,8	8-H6CDD	0.1		1.4		0.1	0. 14
一噁并	1,2,3,6,7,8	8-H6CDD	0.1		2.1		0.1	0.21
英 并 一	1,2,3,7,8,9	9-H6CDD	0.08		3.2		0.1	0.32
对	1,2,3,4,6,7,	,8-H7CDD	0.04		34		0.01	0.34
	O8C	CDD	0.2	4	1071	(0.001	4.1
	2,3,7,8-	T4CDF	0.04		1.2		0.1	0. 12
	1,2,3,7,8	-P5CDF	0.06		3.5		0.05	0. 18
名	2,3,4,7,8	-P5CDF	0.08		2.2		0.5	1.1
氯	1,2,3,4,7,8	8-H6CDF	0.08		4.4		0.1	0.44
多氯代二苯并呋喃	1,2,3,6,7,8	8-H6CDF	0.06		5.0		0.1	0.50
苯	2,3,4,6,7,8	8-H6CDF	0.06		4.9		0.1	0.49
井	1,2,3,7,8,9	9-H6CDF	0.06	(0.80		0.1	0.080
喃	1,2,3,4,6,7	,8-H7CDF	0.06		13		0.01	0. 13
	1,2,3,4,7,8	,9-H7CDF	0.08		2.3		0.01	0.023
	080	CDF	0.1		9.3		0.001	0.0093
		二噁英	类总量Σ(PCDI	Os+PCI	OFs)			9.8

注: 1. 实测质量浓度 (w): 二噁英类质量浓度测定值 (ng/kg)。

根据监测结果可知,场地土壤监测结果均符合《土壤环境质量 建设用地土壤污染风险管控标准》(GB 36600-2018)中第二类用地筛选值的要求。

5.2 地下水自行监测结果分析

5.2.1 地下水质量评价标准

本地块地下水环境质量评价参照《地下水质量标准》(GB/T14848-2017)。本次监测区域选择地下水标准的III类标准限值为参考值。见表 5.2-1。

表 5.2-1 地下水风险评价标准

测试项目	评价标准
色	15 (铂钴色度单位)
嗅和味	_
浑浊度	3NTU
肉眼可见物	

^{2.} 毒性当量因子 (TEF): 采用国际毒性当量因子 I-TEF 定义。

^{3.} 毒性当量 (TEQ) 质量浓度: 折算为相当于 2,3,7,8-T4CDD 的质量浓度 (ng TEQ/kg) 。

^{4.} 当实测质量浓度低于检出限时用"N.D."表示,计算毒性当量 (TEQ) 质量浓度时以 1/2 检出限计算。

pH	6.5≤pH≤8.5
总硬度	450mg/L
溶解性总固体	1000mg/L
硫酸盐	250mg/L
氯化物	250mg/L
铜	1.00mg/L
铅	0.01mg/L
锌	1.00mg/L
镉	0.005mg/L
铁	0.3mg/L
锰	0.10mg/L
挥发性酚类	0.002mg/L
阴离子表面活性剂	0.3mg/L
耗氧量	3.0mg/L
氨氮	0.50mg/L
硫化物	0.02mg/L
钠	200mg/L
亚硝酸盐	1.00mg/L
硝酸盐	20.0mg/L
氰化物	0.05mg/L
氟化物	1.0mg/L
碘化物	0.08mg/L
汞	0.001mg/L
砷	0.01mg/L
硒	0.01mg/L
六价铬	0.05mg/L
三氯甲烷	60μg/L
四氯化碳	2.0μg/L
苯	10.0μg/L
甲苯	700μg/L
镍	0.02mg/L
铝	0.20mg/L
银	0.05mg/L
锡	_

备注: "一"暂无评价标准。

5.2.2 地下水监测结果

广东源生态环保工程有限公司委托广州市建环环保科技有限公司于2023年6月8日-6月9日对该项目进行现场钻探,广东信一检测技术股份有限公司于2023年6月8日-6月9日对该项目进行现场采样工作,7月12日对地下水进行补充采样,监测结果如表5.2-2所示。

根据监测结果可知,场地点位 AS1 的 pH 值、浊度、色度、臭和味、氯化物、 氨氮、锰、钠超出《地下水质量标准》(GB/T 14848-2017)III类标准限值;场地点 位 BS1 的浊度、色度、铁、锰、氨氮、钠、氟化物超出《地下水质量标准》(GB/T 14848-2017) III类标准限值;对照点位 DZS 的 pH 值、氯化物、锰均超出《地下水质量标准》(GB/T 14848-2017) III类标准限值。

各点位其他因子均能满足《地下水质量标准》(GB/T 14848-2017)III类标准限值。

对照周边地下水质量环境现状,该场地潜水含水层地下水色度(度)、臭和味、浑浊度(NTU)、锰、氨氮、钠、氟化物等因子普遍超标,超标原因:根据《广东省地下水功能区划》(粤办函[2009]459号),本项目位于韩江及粤东诸河揭阳揭东地质灾害易发区,该区域个别地段存在氯化物、锰、硝酸盐、亚硝酸盐、氨氮、氟化物、硒、铁、溶解性总固体超标情况,因此本次监测中色度(度)、臭和味、浊度、铁、锰、钠、氟化物超标可能是项目所在地质原因或者周边工业企业排污原因;氨氮超标可能是受到周边人类生活、生产活动的影响。周边工业企业为欧晟绿色燃料(揭阳)有限公司及揭阳市生活垃圾填埋场,点位 BS1 靠近揭阳市生活垃圾渗滤液应急池,并且 BS1 及 AS1 所处位置位于欧晟绿色燃料(揭阳)有限公司及揭阳市生活垃圾填埋场的下游,因此点位 BS1 及点位 AS1 地下水水质受上游垃圾场及欧晟发电厂的影响,因此本项目厂内点位地下水质超标并不属于本厂区生产活动所造成的。

表5.2-2 地下水监测结果 单位: mg/L(备注除外)

检测项目	单位		检测点位及检测组	吉果					
192000000000000000000000000000000000000	+ <u> </u>	BS1	AS1	DZS	标准限值				
水位	m	3.42	5.94	2.39					
pH 值(现场测 定)	无量纲	6.6	5.7	6.0	6.5≤pH≤8.5				
浊度	NTU	87	127	103	≤3				
色度	度	20	20	10	≤15				
臭和味		已有很显 著的臭味	无任何臭和味	无任何臭和味	无				
肉眼可见物		无	无	无	无				
总硬度	mg/L	263	103	123	≤450				
溶解性总固体	mg/L	182	142	103	≤1000				
硫酸盐	mg/L	66	41	28	≤250				
氯化物	mg/L	202	332	267	≤250				
铁	mg/L	9.36	0.12	0.08	≤0.3				
锰	mg/L	33.3	32.3	1.73	≤0.10				
铜	mg/L	0.07	ND	ND	≤1.00				
锌	mg/L	0.08	ND	ND	≤1.00				
铝	mg/L	0.022	0.049	0.010	≤0.20				
挥发酚	mg/L	ND	ND	ND	≤0.002				
阴离子表面活 性剂	mg/L	ND	ND	ND	≤0.3				
耗氧量	mg/L	3.0	2.0	1.8	≤3.0				
氨氮	mg/L	57.2	3.6	0.032	≤0.50				
硫化物	mg/L	0.02	0.02	0.01	≤0.02				
钠	mg/L	1.12×10 ⁴	1.78×10 ³	136	≤200				
亚硝酸盐氮	mg/L	0.077	0.014	0.087	≤1.00				
硝酸盐氮	mg/L	0.73	0.25	0.83	≤20.0				
氰化物	mg/L	ND	ND	ND	≤0.05				
氟化物	mg/L	1.94	0.08	0.13	≤1.0				
碘化物	mg/L	ND	ND	ND	≤0.08				
汞	mg/L	ND	ND	0.00021	≤0.001				
砷	mg/L	0.0027	ND	0.0008	≤0.01				
硒	mg/L	0.0008	ND	0.0005	≤0.01				
镉	mg/L	0.0034	0.0032	0.0019	≤0.005				
六价铬	mg/L	0.037	0.008	0.005	≤0.05				
铅	mg/L	0.006	0.002	0.002	≤0.01				
三氯甲烷	mg/L	ND	ND	ND	≤0.060				
四氯化碳	mg/L	ND	ND	ND	≤0.002				
苯	mg/L	ND	ND	ND	≤0.010				
		1	I .	1					

甲苯	mg/L	ND	ND	ND	≤0.70
备注: "ND"表	示小于检出阻	見 的结果。			

5.3 质量控制结果

项目地下水样品分析质量控制结果统计表和土壤样品分析质量控制结果见附件 10 《揭阳市晟源美佳环保有限公司土壤、地下水环境自行监测质量控制报告》和表 5.3-12-5.3-13 中可以看出地下水样品、土壤样品平行双样等质控数据都达到了实验室以及《土壤环境监测规范》(HJ/T166-2004)的相关要求。

表 5.3-1 土壤样品现场空白样检测结果

		样品编号。	
检测项目	单位	全程序空白	运输空白
		TR20230600902521	TR20230600902531
氯甲烷	μg/kg	ND	ND
氯乙烯	μg/kg	ND	ND
1,1-二氯乙烯	μg/kg	ND	ND
二氯甲烷	μg/kg	ND	ND
反式-1,2-二氯乙 烯	μg/kg	ND	ND
1,1-二氯乙烷	μg/kg	ND	ND
顺式-1,2-二氯乙 烯	μg/kg	ND	ND
氯仿	μg/kg	ND	ND
1,1,1-三氯乙烷	μg/kg	ND	ND
四氯化碳	μg/kg	ND	ND
1,2-二氯乙烷	μg/kg	ND	ND
苯	μg/kg	ND	ND
三氯乙烯	μg/kg	ND	ND
1,2-二氯丙烷	μg/kg	ND	ND
甲苯	μg/kg	ND	ND
1,1,2-三氯乙烷	μg/kg	ND	ND
四氯乙烯	μg/kg	ND	ND
氯苯	μg/kg	ND	ND
1,1,1,2-四氯乙烷	μg/kg	ND	ND
乙苯	μg/kg	ND	ND
间,对-二甲苯	μg/kg	ND	ND
邻-二甲苯	μg/kg	ND	ND
苯乙烯	μg/kg	ND	ND

1,1,2,2-四氯乙烷	μg/kg	ND	ND
1,2,3-三氯丙烷	μg/kg	ND	ND
1,4-二氯苯	μg/kg	ND	ND
1,2-二氯苯	μg/kg	ND	ND

表 5.3-2 土壤实验室空白样检测结果

松湖 瑶 口	出 <i>[</i> 六	样品序号及检测结果					
检测项目	单位	KB1	KB2				
铅	mg/kg	ND	ND				
镉	mg/kg	ND	ND				
镍	mg/kg	ND	ND				
铜	mg/kg	ND	ND				
汞	mg/kg	ND	ND				
砷	mg/kg	ND	ND				
六价铬	mg/kg	ND	ND				
氯甲烷	μg/kg	ND					
氯乙烯	μg/kg	ND					
1,1-二氯乙烯	μg/kg	ND					
二氯甲烷	μg/kg	ND					
反式-1,2-二氯乙烯	μg/kg	ND					
1,1-二氯乙烷	μg/kg	ND					
顺式-1,2-二氯乙烯	μg/kg	ND					
氯仿	μg/kg	ND					
1,1,1-三氯乙烷	μg/kg	ND					
四氯化碳	μg/kg	ND					
苯	μg/kg	ND					
1,2-二氯乙烷	μg/kg	ND					
三氯乙烯	μg/kg	ND					
1,2-二氯丙烷	μg/kg	ND					
甲苯	μg/kg	ND					
1,1,2-三氯乙烷	μg/kg	ND					
四氯乙烯	μg/kg	ND					

氯苯	μg/kg	ND	
1,1,1,2-四氯乙烷	μg/kg	ND	
乙苯	μg/kg	ND	
间,对-二甲苯	μg/kg	ND	
检测项目	举	样品序号2	
′型侧坝目	単位	KB1	KB2
邻-二甲苯	μg/kg	ND	
苯乙烯	μg/kg	ND	
1,1,2,2-四氯乙烷	μg/kg	ND	
1,2,3-三氯丙烷	μg/kg	ND	
1,4-二氯苯	μg/kg	ND	
1,2-二氯苯	μg/kg	ND	
苯胺	mg/kg	ND	
2-氯苯酚	mg/kg	ND	
硝基苯	mg/kg	ND	
萘	mg/kg	ND	
苯并(a)蒽	mg/kg	ND	
崫	mg/kg	ND	
苯并(b)荧蒽	mg/kg	ND	
苯并(k)荧蒽	mg/kg	ND	
苯并(a)芘	mg/kg	ND	
茚并(1,2,3-cd)芘	mg/kg	ND	
二苯并(a,h)蒽	mg/kg	ND	
锡	mg/L	ND	ND
银	μg/L	ND ND 公验会空白检测	ND 结里均为去龄中 评价结里均会故

备注: 1、"ND"表示小于检出限的结果; 2、实验室空白检测结果均为未检出,评价结果均合格。

表 5.3-3 土壤现场平行样检测结果

			10.41.45 H					
				1	金测结果			
检测项目	单位	检测点位(m)	现场平 行样 1	现场平 行样 2	允许/相 对偏差 (%)	偏差要 求(%)	是否 合格	
pH 值	无量 纲	AT2 6.6~7.0 (6.7)	5.17	5.03	0.14	0.3	合格	
水分	%	AT2 6.6~7.0 (6.7)	12.8	12.3	0.5	1.5	合格	
铅	mg/kg	AT2 6.6~7.0 (6.7)	134	121	5.1	20	合格	
镉	mg/kg	AT2 6.6~7.0 (6.7)	0.04	0.05	11.1	35	合格	
镍	mg/kg	AT2 6.6~7.0 (6.7)	5	6	9.1	20	合格	
铜	mg/kg	AT2 6.6~7.0 (6.7)	27	24	5.9	20	合格	
汞	mg/kg	AT2 6.6~7.0 (6.7)	0.006	0.006	0.0	35	合格	
砷	mg/kg	AT2 6.6~7.0 (6.7)	4.28	4.39	1.3	20	合格	
六价铬	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		20		
苯胺	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
2-氯苯酚	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
硝基苯	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
萘	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
苯并(a)蒽	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
崫	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
苯并(b)荧蒽	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
苯并(k)荧蒽	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
苯并(a)芘	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
茚并(1,2,3-cd)芘	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
二苯并(a,h)蒽	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
氯甲烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
氯乙烯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
1,1-二氯乙烯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
二氯甲烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
反式-1,2-二氯乙烯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
1,1-二氯乙烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
顺式-1,2-二氯乙烯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
氯仿	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
1,1,1-三氯乙烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
四氯化碳	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
苯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
1,2-二氯乙烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		
三氯乙烯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50		

				检测结果					
检测项目	单位	检测点位(m)	现场平 行样 1	现场平 行样 2	允许/相 对偏差 (%)	偏差要 求(%)	是否合格		
1,2-二氯丙烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50			
甲苯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50			
1,1,2-三氯乙烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50			
四氯乙烯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50			
氯苯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50			
1,1,1,2-四氯乙烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50			
乙苯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50			
间,对-二甲苯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50			
邻-二甲苯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50			
苯乙烯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50			
1,1,2,2-四氯乙烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50			
1,2,3-三氯丙烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50			
1,4-二氯苯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50			
1,2-二氯苯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50			
锡	mg/L	AT2 6.6~7.0 (6.7)	4.2	4.2	0.0	30	合格		
银	μg/L	AT2 6.6~7.0 (6.7)	0.3	0.3	0.0	30	合格		

备注: 1、土壤现场平行双样偏差要求根据各检测项目分析方法质量保证和质量控制章节及《重点行业企业用地调查质量保证与质量控制技术规定(试行)》及 HJ/T 166-2004 表 13-1 确定;

- 2、平行双样均未检出(ND),则不计算相对偏差;
- 3、"----"表示对该项目不予评价。

表 5.3-4 土壤室内平行样检测结果

			检测结果						
检测项目	单位	样品编号	样 1	样 2	允许/相 对偏差 (%)	偏差要 求(%)	是否合格		
pH 值	无量	TR20230600901103	5.82	5.84	0.02	0.3	合格		
水分	%	TR20230600901102	24.4	24.3	0.1	1.5	合格		
铅	mg/kg	TR20230600901103	293	254	7.1	20	合格		
镉	mg/kg	TR20230600901103	0.02	0.02	0.0	35	合格		
镍	mg/kg	TR20230600901103	13	10	13.0	20	合格		
铜	mg/kg	TR20230600901103	2	2	0.0	20	合格		
汞	mg/kg	TR20230600901103	0.017	0.020	8.1	35	合格		
砷	mg/kg	TR20230600901103	3.85	3.70	2.0	20	合格		

					检测结果		
检测项目	单位	样品编号	样 1	样 2	允许/相 对偏差 (%)	偏差要 求(%)	是否 合格
六价铬	mg/kg	TR20230600901103	ND	ND		20	
苯胺	mg/kg	TR20230600904202	ND	ND		50	
2-氯苯酚	mg/kg	TR20230600904202	ND	ND		50	
硝基苯	mg/kg	TR20230600904202	ND	ND		50	
萘	mg/kg	TR20230600904202	ND	ND		50	
苯并(a)蒽	mg/kg	TR20230600904202	ND	ND		50	
崫	mg/kg	TR20230600904202	ND	ND		50	
苯并(b)荧蒽	mg/kg	TR20230600904202	ND	ND		50	
苯并(k)荧蒽	mg/kg	TR20230600904202	ND	ND		50	
苯并(a)芘	mg/kg	TR20230600904202	ND	ND		50	
茚并(1,2,3-cd)芘	mg/kg	TR20230600904202	ND	ND		50	
二苯并(a,h)蒽	mg/kg	TR20230600904202	ND	ND		50	
氯甲烷	μg/kg	TR20230600902401	ND	ND		50	
氯乙烯	μg/kg	TR20230600902401	ND	ND		50	
1,1-二氯乙烯	μg/kg	TR20230600902401	ND	ND		50	
二氯甲烷	μg/kg	TR20230600902401	ND	ND		50	
反式-1,2-二氯乙烯	μg/kg	TR20230600902401	ND	ND		50	
1,1-二氯乙烷	μg/kg	TR20230600902401	ND	ND		50	
顺式-1,2-二氯乙烯	μg/kg	TR20230600902401	ND	ND		50	
氯仿	μg/kg	TR20230600902401	ND	ND		50	
1,1,1-三氯乙烷	μg/kg	TR20230600902401	ND	ND		50	
四氯化碳	μg/kg	TR20230600902401	ND	ND		50	
苯	μg/kg	TR20230600902401	ND	ND		50	
1,2-二氯乙烷	μg/kg	TR20230600902401	ND	ND		50	
三氯乙烯	μg/kg	TR20230600902401	ND	ND		50	
1,2-二氯丙烷	μg/kg	TR20230600902401	ND	ND		50	
甲苯	μg/kg	TR20230600902401	ND	ND		50	
1,1,2-三氯乙烷	μg/kg	TR20230600902401	ND	ND		50	
四氯乙烯	μg/kg	TR20230600902401	ND	ND		50	
氯苯	μg/kg	TR20230600902401	ND	ND		50	

					检测结果		
检测项目	单位	样品编号	样 1	样 2	允许/相 对偏差 (%)	偏差要 求(%)	是否合格
1,1,1,2-四氯乙烷	μg/kg	TR20230600902401	ND	ND		50	
乙苯	μg/kg	TR20230600902401	ND	ND		50	
间,对-二甲苯	μg/kg	TR20230600902401	ND	ND		50	
邻-二甲苯	μg/kg	TR20230600902401	ND	ND		50	
苯乙烯	μg/kg	TR20230600902401	ND	ND		50	
1,1,2,2-四氯乙烷	μg/kg	TR20230600902401	ND	ND		50	
1,2,3-三氯丙烷	μg/kg	TR20230600902401	ND	ND		50	
1,4-二氯苯	μg/kg	TR20230600902401	ND	ND		50	
1,2-二氯苯	μg/kg	TR20230600902401	ND	ND		50	
锡	mg/L	TR20230600901103	2.4	2.7	5.9	30	合格
银	μg/L	TR20230600901103	0.6	0.6	0.0	30	合格

备注: 1、土壤室内平行双样偏差要求根据各检测项目分析方法质量保证和质量控制章节及《重点行业企业用地调查质量保证与质量控制技术规定(试行)》及 HJ/T 166-2004 表 13-1 确定;

- 2、平行双样均未检出(ND),则不计算相对偏差;
- 3、"----"表示对该项目不予评价。

表 5.3-5 土壤室内加标回收率检测结果

			检测结果						
检测项目	单位	样品编号	加标前 浓度	加标后浓度	加标回收 率(%)	加标回 收率要 求(%)	是否 合格		
铅	mg/kg	TR20230600902103	144	273	95.3	80~120	合格		
镉	mg/kg	TR20230600902103	0.16	0.41	92.0	85~110	合格		
镍	mg/kg	TR20230600902103	25	47	94.8	80~120	合格		
铜	mg/kg	TR20230600902103	35	99	92.0	80~120	合格		
汞	mg/kg	TR20230600902103	0.042	0.095	85.2	75~110	合格		
砷	mg/kg	TR20230600902103	7.72	16.8	88.0	85~105	合格		
六价铬	mg/kg	TR20230600902103	ND	2.0	70.8	70~130	合格		
苯胺	mg/kg	TR20230600904102	ND	0.51	83.5	60~140	合格		
2-氯苯酚	mg/kg	TR20230600904102	ND	0.52	81.1	60~140	合格		
硝基苯	mg/kg	TR20230600904102	ND	0.53	80.2	60~140	合格		
萘	mg/kg	TR20230600904102	ND	0.52	78.6	60~140	合格		

					测结果		
检测项目	单位	样品编号	加标前 浓度	加标后浓度	加标回收 率(%)	加标回 收率要 求(%)	是否 合格
苯并(a)蒽	mg/kg	TR20230600904102	ND	0.6	91.0	60~140	合格
薜	mg/kg	TR20230600904102	ND	0.5	74.4	60~140	合格
苯并(b)荧蒽	mg/kg	TR20230600904102	ND	0.6	82.7	60~140	合格
苯并(k)荧蒽	mg/kg	TR20230600904102	ND	0.5	74.4	60~140	合格
苯并(a)芘	mg/kg	TR20230600904102	ND	0.5	74.4	60~140	合格
茚并(1,2,3-cd)芘	mg/kg	TR20230600904102	ND	0.5	74.4	60~140	合格
二苯并(a,h)蒽	mg/kg	TR20230600904102	ND	0.5	74.4	60~140	合格
氯甲烷	μg/kg	TR20230600903101	ND	48.1	81.2	70~130	合格
氯乙烯	μg/kg	TR20230600903101	ND	50.1	84.6	70~130	合格
1,1-二氯乙烯	μg/kg	TR20230600903101	ND	46.3	78.1	70~130	合格
二氯甲烷	μg/kg	TR20230600903101	ND	53.8	90.5	70~130	合格
反式-1,2-二氯乙烯	μg/kg	TR20230600903101	ND	47.0	79.0	70~130	合格
1,1-二氯乙烷	μg/kg	TR20230600903101	ND	52.0	87.7	70~130	合格
顺式-1,2-二氯乙烯	μg/kg	TR20230600903101	ND	49.3	83.0	70~130	合格
氯仿	μg/kg	TR20230600903101	ND	54.5	92.0	70~130	合格
1,1,1-三氯乙烷	μg/kg	TR20230600903101	ND	54.8	92.4	70~130	合格
四氯化碳	μg/kg	TR20230600903101	ND	54.0	91.0	70~130	合格
1,2-二氯乙烷	μg/kg	TR20230600903101	ND	48.9	82.3	70~130	合格
苯	μg/kg	TR20230600903101	ND	51.5	86.2	70~130	合格
				检验	测结果		
检测项目	单位	样品编号	加标前 浓度	加标后浓度	加标回收率(%)	加标回 收率要 求(%)	是否 合格
三氯乙烯	μg/kg	TR20230600903101	ND	48.7	82.1	70~130	合格
1,2-二氯丙烷	μg/kg	TR20230600903101	ND	48.6	82.0	70~130	合格
甲苯	μg/kg	TR20230600903101	ND	49.1	82.7	70~130	合格
1,1,2-三氯乙烷	μg/kg	TR20230600903101	ND	47.6	80.2	70~130	合格
四氯乙烯	μg/kg	TR20230600903101	ND	49.0	82.4	70~130	合格
氯苯	μg/kg	TR20230600903101	ND	46.9	79.0	70~130	合格
1,1,1,2-四氯乙烷	μg/kg	TR20230600903101	ND	47.9	80.7	70~130	合格

			检测结果						
检测项目	单位	样品编号	加标前 浓度	加标后 浓度	加标回收 率(%)	加标回 收率要 求(%)	是否 合格		
乙苯	μg/kg	TR20230600903101	ND	48.1	81.0	70~130	合格		
间,对-二甲苯	μg/kg	TR20230600903101	ND	96.4	81.7	70~130	合格		
邻-二甲苯	μg/kg	TR20230600903101	ND	47.2	79.5	70~130	合格		
苯乙烯	μg/kg	TR20230600903101	ND	47.4	79.9	70~130	合格		
1,1,2,2-四氯乙烷	μg/kg	TR20230600903101	ND	54.7	92.3	70~130	合格		
1,2,3-三氯丙烷	μg/kg	TR20230600903101	ND	56.9	96.0	70~130	合格		
1,4-二氯苯	μg/kg	TR20230600903101	ND	50.2	84.4	70~130	合格		
1,2-二氯苯	μg/kg	TR20230600903101	ND	51.0	85.7	70~130	合格		
锡	ma/I	TR20230600902103	4.0	14.8	89.0	80~120	合格		
120	mg/L	TR20230600904203	3.4	13.0	94.4	80~120	合格		
银	μg/L	TR20230600902103	0.5	1.3	87.9	80~120	合格		

表 5.3-6 土壤质控样统计结果

检测项目	单位	标样编号	序号	测定值	标准值	是否 合格
		JT2303-0048	1	5.43	5.43±0.21	合格
pH 值	无量纲	JT2304-0113	2	7.46	7.46±0.21	合格
		JT2303-0046	3	8.38	8.37±0.11	合格
铅	mg/kg	GBW07452	1	27	28±1	合格
镉	mg/kg	GBW07452	1	0.13	0.15 ± 0.02	合格
镍	mg/kg	GBW07452	1	39	38±1	合格
铜	mg/kg	GBW07452	1	31	32±1	合格
汞	/1	CDW07452	1	0.059	0.058 ± 0.005	合格
7K	mg/kg	GBW07452	2	0.058	0.058 ± 0.005	合格
砷	mg/kg	GBW07452	1	12.4	11.8±0.9	合格
'nት	mg/kg	OD W 0 / 432	2	12.3	11.8±0.9	合格

表 5.3-7 二噁英土壤样品质控信息表

质控信息:	
样品编号	20230317- 1

	提取、进样内标	回收率 (%)	回收率范围 (%)	判定
	13C12- 1,2,3,4-T4CDD	100	100	合格
多氯代	13C12-2,3,7,8-T4CDD	100	25~ 164	合格
代	13C12- 1,2,3,7,8-P5CDD	108	25~ 181	合格
	13C12- 1,2,3,4,7,8-H6CDD	110	32~ 141	合格
二噁并	13C12- 1,2,3,6,7,8-H6CDD	104	28~ 130	合格
对	13C12- 1,2,3,7,8,9-H6CDD	100	100	合格
	13C12- 1,2,3,4,6,7,8,-H7CDD	104	23~ 140	合格
	13C12-O8CDD	105	17~ 157	合格
	13C12-2,3,7,8-T4CDF	103	24~ 169	合格
	13C12- 1,2,3,7,8-P5CDF	105	24~ 185	合格
多写	13C12-2,3,4,7,8-P5CDF	108	21~ 178	合格
代	13C12- 1,2,3,4,7,8-H6CDF	100	32~ 141	合格
一	13C12- 1,2,3,6,7,8-H6CDF	103	28~ 130	合格
并	13C12-2,3,4,6,7,8-H6CDF	103	28~ 136	合格
多氯代二苯并呋喃	13C12- 1,2,3,7,8,9-H6CDF	114	29~ 147	合格
- 113	13C12- 1,2,3,4,6,7,8-H7CDF	103	28~ 143	合格
	13C12- 1,2,3,4,7,8,9-H7CDF	102	26~ 138	合格

表 5.3-8 地下水现场空白样检测结果

		样品编号》	及检测结果
检测项目	单位	全程序空白	运输空白
		S20230600902121	S20230600902131
臭和味		无任何臭和味	
肉眼可见物		无	
总硬度	mg/L	ND	
溶解性总固体	mg/L	ND	
硫酸盐	mg/L	ND	
氯化物	mg/L	ND	
铁	mg/L	ND	
锰	mg/L	ND	
铜	mg/L	ND	
锌	mg/L	ND	
铝	mg/L	ND	
挥发酚	mg/L	ND	
阴离子表面活性剂	mg/L	ND	
耗氧量	mg/L	ND	
氨氮	mg/L	ND	
硫化物	mg/L	ND	
钠	mg/L	ND	
亚硝酸盐氮	mg/L	ND	
硝酸盐氮	mg/L	ND	
氰化物	mg/L	ND	
氟化物	mg/L	ND	
碘化物	mg/L	ND	

汞	μg/L	ND	
砷	μg/L	ND	
硒	μg/L	ND	
镉	μg/L	ND	
六价铬	mg/L	ND	
铅	μg/L	ND	
三氯甲烷	μg/L	ND	ND
四氯化碳	μg/L	ND	ND
苯	μg/L	ND	ND
甲苯	μg/L	ND	ND

备注: 1、"ND"表示小于检出限的结果,检出限见"附表 1 地下水检测项目及检测信息一览表";

2、现场空白检测结果均为未检出(ND),评价结果均合格。

测结果均为未检出(ND),评价结果均合格。

表 5.3-9 地下水实验室空白样检测结果

	34 D.	样品序号』	及检测结果
检测项目	单位	KB1	KB2
总硬度	mg/L	ND	ND
硫酸盐	mg/L	ND	ND
氯化物	mg/L	ND	ND
铁	mg/L	ND	ND
锰	mg/L	ND	ND
铜	mg/L	ND	ND
锌	mg/L	ND	ND
铝	mg/L	ND	ND
挥发酚	mg/L	ND	ND
阴离子表面活性剂	mg/L	ND	ND
耗氧量	mg/L	ND	ND
氨氮	mg/L	ND	ND
硫化物	mg/L	ND	ND
钠	mg/L	ND	ND
亚硝酸盐氮	mg/L	ND	ND
硝酸盐氮	mg/L	ND	ND
氰化物	mg/L	ND	ND
氟化物	mg/L	ND	ND
碘化物	mg/L	ND	ND
汞	μg/L	ND	ND
砷	μg/L	ND	ND

硒	μg/L	ND	ND
镉	μg/L	ND	ND
六价铬	mg/L	ND	ND
铅	μg/L	ND	ND
三氯甲烷	μg/L	ND	
四氯化碳	μg/L	ND	
苯	μg/L	ND	
甲苯	μg/L	ND	

备注: 1、"ND"表示小于检出限的结果,检出限见"附表 1 地下水检测项目及检测信息一览表"; 实验室空白检测结果均为未检出(ND),评价结果均合格。

表 5.3-10 地下水现场平行样检测结果

			检测结果					
检测项目	单位	检测点位	现场平行样 1	现场平行样 2	允许/相 对偏差 (%)	偏差 要求 (%)	是否合格	
色度	度	AS1	20	20	0.0			
臭和味		AS1	无任何臭和味	无任何臭和味				
肉眼可见物		AS1	无	无				
总硬度	mg/L	AS1	102	104	1.0			
溶解性总固体	mg/L	AS1	146	138	2.8			
硫酸盐	mg/L	AS1	42	40	2.4			
氯化物	mg/L	AS1	331	332	0.2			
铁	mg/L	AS1	0.12	0.12	0.0			
锰	mg/L	AS1	32.4	32.2	0.3			
铜	mg/L	AS1	ND	ND		15		
锌	mg/L	AS1	ND	ND		20		
铝	mg/L	AS1	0.053	0.045	8.2			
挥发酚	mg/L	AS1	ND	ND				
阴离子表面活性剂	mg/L	AS1	ND	ND				
耗氧量	mg/L	AS1	2.0	1.9	2.6			
氨氮	mg/L	AS1	3.7	3.5	2.8			
硫化物	mg/L	AS1	0.02	0.02	0.0	30	合格	
钠	mg/L	AS1	1.77×10^{3}	1.78×10^{3}	0.3	10	合格	
亚硝酸盐氮	mg/L	AS1	0.014	0.013	3.7			
硝酸盐氮	mg/L	AS1	0.25	0.25	0.0			
氰化物	mg/L	AS1	ND	ND		20		
氟化物	mg/L	AS1	0.07	0.08	6.7			
碘化物	mg/L	AS1	ND	ND		10		
汞	μg/L	AS1	ND	ND		20		
砷	μg/L	AS1	ND	ND		20		
硒	μg/L	AS1	ND	ND		20		

				检测结	果		
检测项目	单位	检测点位	现场平行样 1	现场平行样 2	允许/相 对偏差 (%)	偏差 要求 (%)	是否 合格
镉	μg/L	AS1	3.2	3.2	0.0	10	合格
六价铬	mg/L	AS1	0.007	0.009	12.5	15	合格
铅	μg/L	AS1	2	2	0.0	15	合格
三氯甲烷	μg/L	AS1	ND	ND		30	
四氯化碳	μg/L	AS1	ND	ND		30	
苯	μg/L	AS1	ND	ND		30	
甲苯	μg/L	AS1	ND	ND		30	

备注: 1、地下水现场平行双样偏差要求根据各检测项目分析方法质量保证和质量控制章节及《重点行业企业用地调查质量保证与质量控制技术规定(试行)》确定;

- 2、平行双样均未检出(ND),则不计算相对偏差;
- 3、"----"表示对该项目不予评价。

表 5.3-10 地下水室内平行样检测结果

			检测结果						
检测项目	单位	样品编号	样 1	样 2	允许/相对	偏差要求	是否		
					偏差(%)	(%)	合格		
色度	度	S20230600903101	10	10	0.0				
总硬度	mg/L	S20230600903101	118	128	4.1				
溶解性总固体	mg/L	S20230600901101	182	182	0.0				
硫酸盐	mg/L	S20230600901101	68	65	2.3				
氯化物	mg/L	S20230600903101	272	262	1.9				
铁	mg/L	S20230600901101	9.29	9.43	0.7				
锰	mg/L	S20230600901101	33.4	33.1	0.5				
铜	mg/L	S20230600901101	0.07	0.07	0.0	15	合格		
锌	mg/L	S20230600901101	0.08	0.07	6.7	15	合格		
铝	mg/L	S20230600901101	0.021	0.023	4.5				
挥发酚	mg/L	S20230600901101	ND	ND					
阴离子表面活性剂	mg/L	S20230600901101	ND	ND					
耗氧量	mg/L	S20230600903101	1.7	1.9	5.6				
氨氮	mg/L	S20230600901101	57.2	57.3	0.1				
硫化物	mg/L	S20230600901101	0.02	0.02	0.0	30	合格		
钠	mg/L	S20230600901101	1.12×10^4	1.12×10 ⁴	0.0	10	合格		
亚硝酸盐氮	mg/L	S20230600901101	0.077	0.077	0.0				
硝酸盐氮	mg/L	S20230600901101	0.73	0.73	0.0				
氰化物	mg/L	S20230600901101	ND	ND		20			
氟化物	mg/L	S20230600901101	1.97	1.91	1.5				
碘化物	mg/L	S20230600901101	ND	ND		10			

			检测结果						
检测项目	单位	样品编号	样 1	样 2	允许/相对	偏差要求	是否		
			11 -	11 -	偏差(%)	(%)	合格		
汞	μg/L	S20230600901101	ND	ND		20			
砷	μg/L	S20230600901101	2.7	2.7	0.0	20	合格		
硒	μg/L	S20230600901101	0.8	0.8	0.0	20	合格		
镉	μg/L	S20230600901101	3.2	3.6	5.9	10	合格		
六价铬	mg/L	S20230600901101	0.038	0.036	2.7	10	合格		
铅	μg/L	S20230600901101	6	6	0.0	15	合格		
三氯甲烷	μg/L	S20230600901101	ND	ND		30			
四氯化碳	μg/L	S20230600901101	ND	ND		30			
苯	μg/L	S20230600901101	ND	ND		30			
甲苯	μg/L	S20230600901101	ND	ND		30			

备注: 1、地下水室内平行双样偏差要求根据各检测项目分析方法质量保证和质量控制章节及《重点行业企业用地调查质量保证与质量控制技术规定(试行)》确定;

- 2、平行双样均未检出(ND),则不计算相对偏差;
- 3、"----"表示对该项目不予评价。

表 5.3-11 地下水加标回收检测结果

		检测结果						
检测项目	单位	样品编号	加标前 浓度	加标后 浓度	加标回 收率(%)	加标回 收率要 求(%)	是否合格	
铁	mg/L	S20230600902101	0.12	0.46	94.4			
锰	mg/L	S20230600902101	32.4	60.0	98.6			
铜	mg/L	S20230600902101	ND	0.26	90.4	85~115	合格	
锌	mg/L	S20230600902101	ND	0.23	93.2	85~120	合格	
汞	μg/L	S20230600902101	ND	0.17	93.8	70~130	合格	
砷	μg/L	S20230600902101	ND	1.4	89.3	70~130	合格	
硒	μg/L	S20230600902101	ND	1.3	91.7	70~130	合格	
镉	μg/L	S20230600902101	3.2	7.8	92.0	90~110	合格	
六价铬	mg/L	S20230600903101	0.005	0.024	95.0	90~110	合格	
铅	μg/L	S20230600902111	2	4	90.9	85~115	合格	
三氯甲烷	μg/L	S20230600902101	ND	49.2	97.0	60~130	合格	
四氯化碳	μg/L	S20230600902101	ND	42.2	82.9	60~130	合格	
苯	μg/L	S20230600902101	ND	42.2	83.0	60~130	合格	

			检测结果											
检测项目	単位	样品编号	加标前浓度	加标后浓度	加标回 收率(%)	加标回 收率要 求(%)	是否合格							
甲苯	μg/L	S20230600902101	ND	47.1	92.8	60~130	合格							

备注: 地下水加标回收率要求根据各检测项目分析方法质量保证和质量控制章节及《重点行业企业用 地调查质量保证与质量控制技术规定(试行)》确定。

表 5.3-11 地下水质控样统计结果

检测项目	单位	标样编号	序号	测定值	标准值	是否 合格
总硬度	mg/L	B22020243	1	151	157±8	合格
硫酸盐	mg/L	B21070011	1	5.41	5.15±0.35	合格
氯化物	mg/L	B21060184	1	1.66	1.61±0.13	合格
铁	mg/L	22091050	1	1.30	1.33±0.07	合格
锰	mg/L	202529	1	1.34	1.32±0.06	合格
铜	mg/L	201133	1	1.14	1.09±0.05	合格
锌	mg/L	21031017	1	0.451	0.469±0.024	合格
铝	mg/L	21081021	1	0.120	0.123±0.007	合格
挥发酚	mg/L	A22040278	1	3.12	3.21±0.15	合格
阴离子表面活性剂	mg/L	23031043	1	2.14	2.19±0.21	合格
耗氧量	mg/L	2031111	1	3.86	3.63±0.27	合格
氨氮	mg/L	22121035	1	5.06	4.95±0.25	合格
硫化物	mg/L	21051194	1	4.56	4.52±0.25	合格
亚硝酸盐氮	mg/L	B22060034	1	0.268	0.260±0.012	合格
硝酸盐氮	mg/L	B21090111	1	3.56	3.55±0.18	合格
氰化物	mg/L	22091095	1	0.198	0.204±0.015	合格
氟化物	mg/L	B21080014	1	1.85	1.78±0.15	合格
	ша/Т	21001045	1	1.25	1.21±0.11	合格
汞	μg/L	21081045	2	1.18	1.21±0.11	合格
Σr l ı	a /T	200450	1	14.8	14.6±1.5	合格
砷	μg/L	200450	2	14.7	14.6±1.5	合格
硒	μg/L	22081075	1	14.5	15.3±0.9	合格

镉	μg/L	B2012034	1	44.1	44.6±2.6	合格
六价铬	mg/L	21041141	1	0.210	0.211±0.011	合格
铅	mg/L	201236	1	0.141	0.152±0.012	合格

表 5.3-12 土壤样品质控统计表

分析	样品	样品		IJ	见场平行双	样		实验室平行双样					实验室加标回收					实验室空白						标准样(pH值:无量纲)						
项目	总数 (个)	数(个)	个数	样品 比例 (%)	相对偏 差范围 (%)	允许差 值要求 (%)		个数	样品 比例 (%)	相对偏差 范围(%)	相对偏 差要求 (%)	合格 率(%)	个数	样品 比例 (%)	加标回收 率范围(%)	加标回收 率要求 (%)	合格2 (%)		数比	羊品 北例 (%)	结果	要求	合格率 (%)	个数	样品 比例 (%)	آ ^ک ا	吉果范 (mg/k		要求 (mg/kg	
																											5.43	3	5.22~5.	
pH值	10	9	1	11.1	0.14	0.3	100	1	10.0	0.02	0.3	100	/	/	/	/	/		/	/	/	/	/	3	30.0)	7.46		7.25~7.	
																											8.38	3	8.26~8.	48 100
水分	10	9	1	11.1	0.5	1.5	100	1	10.0	0.1	1.5	100	/	/	/	/	/		/	/	/	/	/	/	/		/		/	/
铅	10	9	1	11.1	5.1	20	100	1	10.0	7.1	20	100	1	10.0	95.3	80~120	100) 2	2 2	20.0	ND	ND	100	1	10.0)	27		27~29	100
镉	10	9	1	11.1	11.1	35	100	1	10.0	0.0	35	100	1	10.0	92.0	85~110	100) 2	2 2	20.0	ND	ND	100	1	10.0)	0.13	3	0.13~0.	17 100
镍	10	9	1	11.1	9.1	20	100	1	10.0	13.0	20	100	1	10.0	94.8	80~120	100) 2	2 2	20.0	ND	ND	100	1	10.0)	39		37~39	100
铜	10	9	1	11.1	5.9	20	100	1	10.0	0.0	20	100	1	10.0	92.0	80~120	100) [2 2	20.0	ND	ND	100	1	10.0)	31		31~33	3 100
汞	10	9	1	11.1	0.0	35	100	1	10.0	8.1	35	100	1	10.0	85.2	75~110	100) 2	2 2	20.0	ND	ND	100	2	20.0	0.0)58~0	0.059	0.053~0.	063 100
砷	10	9	1	11.1	1.3	20	100	1	10.0	2.0	20	100	1	10.0	88.0	85~105	100) 2	2 2	20.0	ND	ND	100	2	20.0) 12	2.3~1	2.4	10.9~12	2.7 100
六价铬	10	9	1	11.1	/	20	/	1	10.0	/	20	/	1	10.0	70.8	70~130	100) 2	2 2	20.0	ND	ND	100	/	/		/		/	/
锡	10	9	1	11.1	0.0	30	100	1	10.0	5.9	30	100	2	20.0	89.0~94.4	80~120	100) 2	2 2	20.0	ND	ND	100	/	/		/		/	/
银	10	9	1	11.1	0.0	30	100	1	10.0	0.0	30	100	1	10.0	87.9	80~120	100) [2 2	20.0	ND	ND	100	/	/		/		/	/
					易平行双科					P行双样			实	验室加	示回收			实	验室	空白	·	运输空台			空白		全程序空白		∃	
分析 项目	样品 总数 (个)	样品 数 (个)	个数	样品 相 比例 ź (%)	相对偏允说 全范围值要 (%) (%	开差 要求 率(%	各 个 数	样品 例(%	相x 比 偏差 6) 范围 (%	園 要求	合格 率 (%)	数样的	品比 5(%)	加标回译范围(牧 加标回 收率要 求(%)	合格率 (%)	数比	羊品 比例 : %)	结果	要求	合格率 (%)	个数	样品 比例 (%)	吉果	要求	合格 图(%)	个数	羊品比 例(%)	结果 要	求合格率(%)
苯胺	10	9	1	11.1	/ 5	0 /	1	10.0) /	50	/ 1	10	0.0	83.5	60~140	100	1 10	0.0	ND	ND	100	/	/	/	/	/	/	/	/	' /
2-氯苯酚	10	9	1	11.1	/ 5	0 /	1	10.0) /	50	/ 1	10	0.0	81.1	60~140	100	1 10	0.0	ND	ND	100	/	/	/	/	/	/	/	/	′ / /
硝基苯	10	9	1	11.1	/ 5	0 /	1	10.0) /	50	/ 1	10	0.0	80.2	60~140	100	1 10	0.0	ND	ND	100	/	/	/	/	/	/	/	/	′ /

萘	10	9	1	11.1	/	50	/	1	10.0	/	50	/	1	10.0	78.6	60~140	100	1	10.0	ND	ND	100	/	/	/	/	/	/	/	/	/	/
苯并(a)蒽	10	9	1	11.1	/	50	/	1	10.0	/	50	/	1	10.0	91.0	60~140	100	1	10.0	ND	ND	100	/	/	/	/	/	/	/ /	/	/	/
崫	10	9	1	11.1	/	50	/	1	10.0	/	50	/	1	10.0	74.4	60~140	100	1	10.0	ND	ND	100	/	/	/	/	/	/	/	/	/	/
苯并(b)荧 蒽	10	9	1	11.1	/	50	/	1	10.0	/	50	/	1	10.0	82.7	60~140	100	1	10.0	ND	ND	100	/	/	/	/	/	/	/	/	/	/
苯并(k)荧 蔥	10	9	1	11.1	/	50	/	1	10.0	/	50	/	1	10.0	74.4	60~140	100	1	10.0	ND	ND	100	/	/	/	/	/	/	/	/	/	/
苯并(a)芘	10	9	1	11.1	/	50	/	1	10.0	/	50	/	1	10.0	74.4	60~140	100	1	10.0	ND	ND	100	/	/	/	/	/	/	/	/	/	/
茚并 (1,2,3-cd) 芘	10	9	1	11.1	/	50	/	1	10.0	/	50	/	1	10.0	74.4	60~140	100	1	10.0	ND	ND	100	/	/	/	/	/	/	/	/	/	/
二苯并 (a,h)蒽	10	9	1	11.1	/	50	/	1	10.0	/	50	/	1	10.0	74.4	60~140	100	1	10.0	ND	ND	100	/	/	/	/	/	/	/	/	/	/
				现	场平行	双样			实验	俭室平行	放样			5	实验室加标[回收			乡	验室	空白			这	S输空	白			刍	全程序的	空白	
分析 项目	样品 总数 (个)	样品 数 (个)	个数	样品 比例 (%)	相对偏 差范围 (%)	允许差 值要求 (%)	合格 率(%)	个 数	样品 比例 (%)	相对偏 差范围 (%)	相对 偏差 要求 (%)	合格 率 (%)	个数	样品 比例 (%)	加标回收率 范围(%)	加标回4率要求(%	女 る (%)	个数	样品 比例 (%)	结果	要求	合格率 (%)	个数	样品 比例 (%)	结果	要求	合格 率(%)	个数	样品比 例(%)	'结果	要求	合格率 (%)
氯甲烷	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	81.2	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
氯乙烯	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	84.6	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
1,1-二氯 乙烯	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	78.1	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
二氯甲烷	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	90.5	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
反式-1,2- 二氯乙烯	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	79.0	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
1,1-二氯 乙烷	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	87.7	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
顺式-1,2- 二氯乙烯	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	83.0	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
氯仿	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	92.0	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
1,1,1-三 氯乙烷	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	92.4	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
四氯化碳	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	91.0	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
1,2-二氯 乙烷	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	82.3	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100

苯	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	86.2	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
三氯乙烯	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	82.1	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
1,2-二氯 丙烷	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	82.0	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
甲苯	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	82.7	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
1,1,2-三 氯乙烷	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	80.2	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
四氯乙烯	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	82.4	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
氯苯	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	79.0	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
1,1,1,2-四 氯乙烷	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	80.7	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
乙苯	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	81.0	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
间,对-二	12	9	1	11.1	/	50	/	1	8.3	/	50	/	1	8.3	81.7	70~130	100	1	8.3	ND	ND	100	1	11.1	ND	ND	100	1	11.1	ND	ND	100
甲苯								1 1																								
甲本				现	 场平行	L 双样			实	脸室平行	双样					回收			实	验室	空白			这	輸空	白 白			至	 全程序:	空白	
分析项目	样品 总数 (个)	样品 数 (个)	个数	样品	相对偏	分次差	合格 率(%)	个数	样品	相对偏	双样 相对 偏差求 (%)	合格 率 (%)	个数	样品 比例 (%)	实验室加标[加标回收率 范围(%)		合格 率 (%)	个数	样品		空白 要求	合格率 (%)	个数	样品 比例 (%)			合格 率(%)	个数	4 样品比 例(%)			合格率 (%)
分析	总数	数	个数	样品 比例	相对偏 差范围	允许差 值要求	合格 率(%)	个数	样品 比例	相对偏 差范围	相对 偏差 要求	率	个数 1	样品 比例	加标回收率	加标回收	率	个数 1	样品 比例			合格率 (%) 100	个数	样品 比例	结果		合格 率(%) 100	个数				
分析 项目	总数 (个)	数 (个)	个数 1 1	样品 比例 (%)	相对偏 差范围	允许差 值要求 (%)	合格 率(%) /	个 数 1	样品 比例 (%)	相对偏 差范围	相对偏差要求(%)	率	个数 1 1	样品 比例 (%)	加标回收率 范围(%)	加标回收 率要求(%)	率 (%)	个数 1 1	样品 比例 (%)	结果	要求	(%)	个数 1 1	样品 比例 (%)	结果 ND	要求	率(%)	个数 1 1	样品比 例(%)	结果	要求	(%)
分析 项目 邻-二甲 苯 苯乙烯 1,1,2,2-四 氯乙烷	总数 (个) 12	数(个)	个数 1 1	样品 比例 (%)	相对偏 差范围	允许差 值要求 (%) 50	合格 率(%) / /	个数 1 1	样品 比例 (%) 8.3	相对偏 差范围	相对 偏差 要求 (%) 50	率	个数 1 1	样品 比例 (%) 8.3	加标回收率 范围(%)	加标回收率要求(%)	率 (%) 100	个数 1 1 1	样品 比例 (%) 8.3	结果 ND	要求 ND	100	个数 1 1	样品 比例 (%) 11.1	结果 ND ND	要求 ND	率(%) 100	个数 1 1	样品比 例(%) 11.1	结果 ND	要求 ND	100
分析 项目 邻-二甲 苯乙烯 1,1,2,2-四 氯乙烷 1,2,3-三 氯丙烷	总数 (个) 12 12	数 (个) 9	个数 1 1 1	样品 比例 (%) 11.1	相对偏 差范围	允许差 值要求 (%) 50	合格 率(%) / /	个数 1 1 1	样品 比例 (%) 8.3	相对偏 差范围	相对偏差 要求 (%) 50	率	个数 1 1 1	样品 比例 (%) 8.3	加标回收率 范围(%) 79.5 79.9	加标回收率要求(%) 70~130 70~130	率 (%) 100 100	个数 1 1 1	样品 比例 (%) 8.3 8.3	结果 ND ND	要求 ND ND	100	个数 1 1 1	样品 比例 (%) 11.1	结果 ND ND ND	要求 ND ND	率(%) 100 100	个数 1 1 1	样品比例(%) 11.1 11.1	结果 ND ND	要求 ND ND	100
分析 项目 邻-二甲 苯乙烯 1,1,2,2-四 氯乙烷 1,2,3-三 氯丙烷 1,4-二氯 苯	总数 (个) 12 12 12	数 (个) 9 9	个数 1 1 1 1	样品 比例 (%) 11.1 11.1	相对偏 差范围	允许差 值要求 (%) 50 50	合格 率(%) / / /	个数 1 1 1	样品 比例 (%) 8.3 8.3	相对偏 差范围	相对偏差 要求 (%) 50 50	率	个数 1 1 1 1	样品 比例 (%) 8.3 8.3	加标回收率 范围(%) 79.5 79.9 92.3	加标回收率要求(%) 70~130 70~130	率 (%) 100 100 100	个数 1 1 1	样品 比例 (%) 8.3 8.3	结果 ND ND	要求 ND ND ND	(%) 100 100 100	个数 1 1 1 1	样品 比例 (%) 11.1 11.1	结果 ND ND ND	要求 ND ND	率(%) 100 100 100	个数 1 1 1 1	样品比例(%) 11.1 11.1 11.1	结果 ND ND ND	要求 ND ND ND	100 100 100
分析 项目 邻-二甲 苯 苯乙烯 1,1,2,2-四 氯乙烷 1,2,3-三 氯丙烷 1,4-二氯	总数 (个) 12 12 12 12 12	数 (个) 9 9 9	1 1 1 1 1	样品 比例 (%) 11.1 11.1 11.1 11.1 11.1	相对偏差范围 (%) / / / / / / / / / / / / / / / / / / /	允许差 值要求 (%) 50 50 50 50	字(%) / / / / / /	1 1 1 1 1	样品 比例 (%) 8.3 8.3 8.3 8.3 8.3	相对偏 差范围	相对偏差 要求 (%) 50 50 50 50 50	率 (%) / / / /	1 1 1 1 1	样品 比例 (%) 8.3 8.3 8.3 8.3 8.3	加标回收率 范围(%) 79.5 79.9 92.3 96.0 84.4 85.7	加标回收率要求(%) 70~130 70~130 70~130	率 (%) 100 100 100 100 100	1 1 1 1	样品 比例 (%) 8.3 8.3 8.3 8.3 8.3	结果 ND ND ND ND ND ND	要求 ND ND ND ND ND ND	(%) 100 100 100 100 100 100	1 1 1 1 1	样品 比例 (%) 11.1 11.1 11.1 11.1 11.1	结果 ND ND ND ND ND ND ND	要求 ND ND ND ND	率(%) 100 100 100 100 100 100 100	1 1 1 1 1	样品比例(%) 11.1 11.1 11.1 11.1 11.1	结果 ND ND ND ND ND ND ND	要求 ND ND ND ND ND ND ND	100 100 100 100

注: **1.样品总数**: 样品数+现场平行双样数+运输空白数+全程序空白数。**2.运输空白样品比例计算**: 运输空白样品个数/样品数*100。**3.全程序空白样品比例计算**: 全程序空白样品个数/样品数*100。**4.实验室空白样品比例计算**: 实验室空白样品个数/样品总数*100。**5.实验室平行双样样品比例计算**: 实验室平行双样个数/样品总数*100。**6.实验室加标回收率样品比例计算**: 实验室加标回收率个数/样品总数*100。**7.质控样样品比例计算**: 质控样个数/样品总数*100。**8.**

现场平行样品比例计算:现场平行样品个数/样品数*100。

表 5.3-13 地下水样品质控统计表

	样具	样具		现均	汤平 行	双样			实验	全平行	双样			实	验室加标图	回收			实	验室空	ぎ白 こうしょう			全	程序空	? 白			标准样	(镉、汞、硒	神、硒: μg/L)	
分析项目	样品 总数 (个)	数(个)	个数	样品 比例 (%)	相对 偏差 范围 (%)	允许 差值 要求 (%)	合格 率(%)	个数	样品 比例 (%)	相对偏 差范围 (%)	允许 差值 要求 (%)	合 格 率 (%)	个数	样品 比例 (%)	加标回收 率范围(%)	加标回收 率要求 (%)	合 格 率 (%)	个数	样品 比例 (%)	结果	要求	合 格 率 (%)	个数	样品 比例 (%)	结果	要求	合 格 率 (%)	个数	样品比 例(%)	结果范围 (mg/L)	要求 (mg/L)	合格 率 (%)
色度	5	3	1	33.3	0.0	/	/	1	20.0	0.0	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/
臭和味	5	3	1	33.3	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	1	33.3	ND	ND	100	/	/	/	/	/
肉眼可 见物	5	3	1	33.3	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	1	33.3	ND	ND	100	/	/	/	/	/
总硬度	5	3	1	33.3	1.0	/	/	1	20.0	4.1	/	/	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	151	149~165	100
溶解性 总固体	5	3	1	33.3	2.8	/	/	1	20.0	0.0	/	/	/	/	/	/	/	/	/	/	/	/	1	33.3	ND	ND	100	/	/	/	/	/
硫酸盐	5	3	1	33.3	2.4	/	/	1	20.0	2.3	/	/	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	5.41	4.80~5.50	100
氯化物	5	3	1	33.3	0.2	/	/	1	20.0	1.9	/	/	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	1.66	1.48~1.74	100
铁	5	3	1	33.3	0.0	/	/	1	20.0	0.7	/	/	1	20.0	94.4	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	1.30	1.26~1.40	100
锰	5	3	1	33.3	0.3	/	/	1	20.0	0.5	/	/	1	20.0	98.6	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	1.34	1.26~1.38	100
铜	5	3	1	33.3	/	15	/	1	20.0	0.0	15	100	1	20.0	90.4	85~115	100	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	1.14	1.04~1.14	100
锌	5	3	1	33.3	/	20	/	1	20.0	6.7	15	100	1	20.0	93.2	85~120	100	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	0.451	0.445~0.493	100
铝	5	3	1	33.3	8.2	/	/	1	20.0	4.5	/	/	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	0.120	0.116~0.130	100
挥发酚	5	3	1	33.3	/	/	/	1	20.0	/	/	/	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	3.12	3.06~3.36	100
阴离子 表面活 性剂	5	3	1	33.3	/	/	/	1	20.0	/	/	/	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	2.14	1.98~2.40	100

耗氧量	5	3	1	33.3	2.6	/	/	1	20.0	5.6	/	/	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	3	.86	3.36	~3.90	100
氨氮	5	3	1	33.3	2.8	/	/	1	20.0	0.1	/	/	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	5	.06	4.70	~5.20	100
硫化物	5	3	1	33.3	0.0	30	100	1	20.0	0.0	30	100	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	4	.56	4.27	~4.77	100
钠	5	3	1	33.3	0.3	10	100	1	20.0	0.0	10	100	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	/	/		/		/	/
亚硝酸 盐氮	5	3	1	33.3	3.7	/	/	1	20.0	0.0	/	/	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	0.	268	0.248	~0.272	100
硝酸盐 氮	5	3	1	33.3	0.0	/	/	1	20.0	0.0	/	/	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	3	.56	3.37	~3.73	100
氰化物	5	3	1	33.3	/	20	/	1	20.0	/	20	/	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	0.	198	0.189	~0.219	100
氟化物	5	3	1	33.3	6.7	/	/	1	20.0	1.5	/	/	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	1	.85	1.63	~1.93	100
碘化物	5	3	1	33.3	/	10	/	1	20.0	/	10	/	/	/	/	/	/	2	40.0	ND	ND	100	1	33.3	ND	ND	100	/	/		/		/	/
汞	5	3	1	33.3	/	20	/	1	20.0	/	20	/	1	20.0	93.8	70~130	100	2	40.0	ND	ND	100	1	33.3	ND	ND	100	2	40.0	1.18	~1.25	1.10	~1.32	100
砷	5	3	1	33.3	/	20	/	1	20.0	0.0	20	100	1	20.0	89.3	70~130	100	2	40.0	ND	ND	100	1	33.3	ND	ND	100	2	40.0	14.7	~14.8	13.1	~16.1	100
硒	5	3	1	33.3	/	20	/	1	20.0	0.0	20	100	1	20.0	91.7	70~130	100	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	1	4.5	14.4	~16.2	100
镉	5	3	1	33.3	0.0	10	100	1	20.0	5.9	10	100	1	20.0	92.0	90~110	100	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	4	4.1	42.0	~47.2	100
六价铬	5	3	1	33.3	12.5	15	100	1	20.0	2.7	10	100	1	20.0	95.0	90~110	100	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	0.	210	0.200	~0.222	100
铅	5	3	1	33.3	0.0	15	100	1	20.0	0.0	15	100	1	20.0	90.9	85~115	100	2	40.0	ND	ND	100	1	33.3	ND	ND	100	1	20.0	0.	141	0.140	~0.164	100
三氯甲烷	6	3		1	33.3	/	30	/	1	16.7	/	30	/	1	16.7	97.0	50~1	30	100	1	16.7	ND	ND	100	1	33.3	ND	ND	100	1	33.3	ND N	ND	100
四氯化 碳	6	3		1	33.3	/	30	/	1	16.7	/	30	/	1	16.7	82.9	50~1	30	100	1	16.7	ND	ND	100	1	33.3	ND	ND	100	1	33.3	ND N	ND	100
苯	6	3		1	33.3	/	30	/	1	16.7	/	30	/	1	16.7	83.0	60~1	30	100	1	16.7	ND	ND	100	1	33.3	ND	ND	100	1	33.3	ND N	ND	100
甲苯	6	3		1	33.3	/	30	/	1	16.7	/	30	/	1	16.7	92.8	60~1	30	100	1	16.7	ND	ND	100	1	33.3	ND	ND	100	1	33.3	ND N	ND	100
		3/ 1 -	4 42	* I H	- 	44 口 4	¥4- ±11.	1Z. \u03b4	ナノニ コロ	十大 米	二十人六	>	4. 1	和房	空白粉	2 法输出	4	¥ 🗆	LIZ MIL	上一一	\= t/	1 12 F	444		KH / HY	□ ¥4. *	100	2/	、中中	134 K	- 1 44 - I	LIZ ANI		

注: **1.样品总数**: 样品数+现场平行双样数+运输空白数+全程序空白数。**2.运输空白样品比例计算**: 运输空白样品个数/样品数*100。**3.全程序空白样品比例计算**: 全程序空白样品个数/样品数*100。**4.实验室空白样品比例计算**: 实验室空白样品个数/样品总数*100。**5.实验室平行双样样品比例计算**: 实验室平行双样个数/样品总数*100。**6.实验室加标回收率样品比例计算**: 实验室加标回收率个数/样品总数*100。**7.质控样样品比例计算**: 质控样个数/样品总数*100。**8.**

现场平行样品比例计算:现场平行样品个数/样品数*100。

第六章 结论和建议

6.1 结论

揭阳市晟源美佳环保有限公司本次排查共布设4个土壤调查点位,根据土壤采样及分析结果,土壤所有监测因子检测结果均符合《土壤环境质量 建设用地土壤污染风险管控标准》(GB 36600-2018)中第二类用地筛选值的要求,不存在超风险筛选值点位。

本次排查共布设 3 个地下水调查点位,其中 3 个为重点单元的监测点位,1 个为周边区域的对照监测点位。根据地下水采样及分析结果,场地点位 AS1 的 pH 值、浊度、色度、臭和味、氯化物、氨氮、锰、钠、镉超出《地下水质量标准》(GB/T 14848-2017)III类标准限值;场地点位 BS1 的浊度、色度、铁、锰、氨氮、钠、氟化物超出《地下水质量标准》(GB/T 14848-2017)III类标准限值;对照点位 DZS 的 pH 值、氯化物、锰均超出《地下水质量标准》(GB/T 14848-2017)III类标准限值。

各点位其他因子均能满足《地下水质量标准》(GB/T 14848-2017)III类标准限值。

6.2 建议

为保障揭阳市晟源美佳环保有限公司地块土壤环境质量,本报告提出如下建议:

- (1) 地块内各企业应加强环保设施的日常维护和管理,确保各项污染物长期稳定达标排放,减少对土壤和地下水的污染。
 - (2) 地块应加强危险废物暂存区等区域风险防范措施, 杜绝环境污染事故的发生。
- (3) 严格按照国家有关规定对危险废物、危险化学品、生活垃圾等物质进行分类管理,对其在厂区内的储存、运输、处置进行全过程监管,避免造成土壤污染。
- (5)企业应根据技术指南要求,开展长期监测工作,如实记录监测数据并开展统计分析工作,当判定企业内土壤和地下水存在污染迹象时,此时应立即组织相关人员查明污染原因,采取措施防止新增污染;同时依据《建设用地土壤污染状况调查 技术导则》(HJ25.1-2019)和《建设用地土壤污染风险管控和修复 监测技术导则》(HJ25.2-2019)所述方法,启动土壤或地下水风险评估工作,根据风险评估结果采取相应的风险管控措施,防止污染物的进一步扩散。

(6)由于公司地块内地下水中的浊度、色度、铁、锰、氨氮、钠、氟化物浓度超出地下水III类标准限值,生产过程中严禁对地块内地下水进行开采利用。

针对企业地下水pH值偏低,地下水浊度、色度、铁、锰、氨氮、钠、氟化物超标,主要集中在BS1点位的现象,建议企业于下次开展污染隐患排查时,重点排查企业堆场的地面防渗情况,并继续开展后续监测工作;制定并完善企业突发环境事故应急预案。

6.3 不确定性因素分析

本次场内的采样布点以《在产企业土壤及地下水自行监测技术指南(征求意见稿)》为主,结合《建设用地土壤污染风险管控和修复 监测技术导则》 HJ 25.2-2019 、《土壤环境监测技术规范》 HJ/T 166-2004 、《重点行业企业用地调查疑似污染地块布点技术规定(试行)》 和《地下水环境监测技术规范》 HJ 164-2020 等规定,确定土 壤监测点位和地下水监测点位布点工作程序,主要布点依据包括:

- (1) 根据已有资料或前期调查表明可能存在污染的区域;
- (2) 各类地下储罐、管线、集水井、检查井等所在的区域;
- (3) 固体废物堆放的区域:
- (4)原辅材料、产品、化学品、有毒有害物质以及危险废物等生产、 贮存、装卸、使用和处置的区域:
 - (5) 其他存在明显污染痕迹或异味的区域。

同时,根据《重点行业企业用地调查疑似污染地块布点技术规定》的要求, 对于在产企业,土壤布点应在不影响企业正常生产、且不成安全隐患或二次污染的情况下确定(例如钻探过程可能引起爆炸、坍塌、打穿管线或防渗层等)。因而,此次土壤污染监测布点受到了一定限制。对于部分会影响企业生产、容易造成安全隐患或者二次污染的区域,如车间内、水池或渗坑底部等,本次土壤污染监测未在这些区域内布点。未布点取样区域土壤污染情况存在不确定性。

第七章 监测报告编制

企业自行监测报告内容主要包括:

- (1) 企业概述及重点区域和设施;
- (2) 监测点位的选取、布设说明及相应的特征污染物选取说明;
- (3) 监测分析方法、检测结果及原因分析;
- (4) 企业针对监测结果和原因分析拟采取的主要措施。

经由监测结果分析污染物超过标准限值,或者监测值远高于背景值时,表明 该点位已经存在污染迹象,应排查污染源和污染原因,并启动相应的风险评估, 并及时向生态环境部门等有关部门报告。

第八章 信息公开

企业应通过对外网站、报纸、广播、电视等便于公众知晓的方式公开自行监测信息,保证信息的时效性。公开内容应包括:

- (1) 自行监测方案;
- (2) 自行监测结果:全部监测点位、监测时间、污染物种类及浓度、标准限值;
 - (3) 企业自行监测报告。

第九章 健康和安全防护计划

9.1 地块安全风险识别

目前企业处于在产状态,在现场采样过程需注意以下两点:

- (1)确保现场备有干粉灭火器和一个医疗应急箱,同时配备防护服、护目镜、防化靴和雨衣,以备应急情况使用;
- (2) 在施工期间保证所有人员配备适合的劳保用品,所有现场作业人员在现场时,需穿戴基本的个人防护用品,包括安全帽、安全鞋、护目镜、耳塞、安全背心和长袖工作服。每次采样时,使用一次性丁腈手套。

9.2 地块安全保障与风险防控措施

经与地块负责人对接,现场工作期间应严格落实以下安全保障与风险防控措施:

- (1) 采样前
- 1) 钻探点位需得到地块负责人认可;
- 2) 所有人员进场前需经过安全培训,严格执行现场设备操作规范,按要求使用个人防护装备;
 - (2) 采样过程
- 1)设置施工区警戒线:在现场调查采样操作区周边,设立明显的标识牌及安全警示线,钻孔作业时不准无关人员、车辆靠近,避免发生危险:
- 2) 关注设备工况:作业中严格执行设备使用说明和操作规程,作业过程时刻观察设备各结构组件的状态,及时发现设备故障、损坏,发现故障立即停止作业,对设备故障原因现场排查、修复。钻探与取样应相互配合,注意钻探采样时的作业位置,掌握好采样时机,机长观察工作状态若有问题及时更正指导或停止施工;
 - 3) 谨慎施工关注钻进异常情况: 严格按照布点采样方案进行, 钻井施工中

需谨慎,时刻注意土层变化,不得冒进,防止事故发生;吊装搬动钻具、采样管时,应谨慎施工,严格杜绝物件掉落、设备倾倒等安全事故;密切关注钻进过程中的异常情况,如异响、遇异常物、突发异味等现象,应立刻停止钻进,排除异常情况后方可继续钻进;

4)施工期人员防护:全程规范佩戴安全帽,存在挥发性气体、刺激性异味气体、腐蚀性酸性/碱性物料场地,应根据场地污染情况佩戴防护器具,接触样品时全程佩戴一次性丁腈手套,避免皮肤直接接触样品,现场使用保护剂时,应佩戴手套,查验瓶内的保护剂是否泄漏。

(3) 采样后撤场

- 1) 采样作业完成后,按照钻井操作规程安全有序拆除设备,妥善收集相关 采样配件,与企业负责人沟通后,在采样负责人指挥下有序撤场,若地块负责人 对采样后施工区域恢复有特殊要求,应完成相关恢复要求后再撤场;
- 2) 应及时清理现场,钻探过程中产生的废土、废水及其他废弃物应妥善处置,不随意丢弃。

检验检测机构资质认定证书

证书编号: 201919124675

名称:广东信一检测技术股份有限公司

地址:广州市黄埔区瑞泰路7号自编二栋(部位:二楼 203 房)

经审查, 你机构已具备国家有关法律、行政法规规定的基本条件和能力, 现予批准, 可以向社会出具具有证明作用的数据和结果, 特发此证。 资质认定包括检验检测机构计量认证。

检验检测能力及授权签字人见证书附表

你机构对外出具检验检测报告或证书的法律责任由广东信一检测技 术股份有限公司承担。

许可使用标志

201919124675 注:需要延续证书有效期的,应当在 证书届满有效期3个月前提出申请, 不再另行通知。

本证书由国家认证认可监督管理委员会监制,在中华人民共和国境内有效

发证日期: 2019 年 11 月 13 日

有效期至: 2025 年 11 月 12 日

发证机关:《印章》

首次

编号: S1212019053348G(1-1)

统一社会信用代码

91440101MA5CLL3R9M

营业执照

(副 本)

扫描二维码登录 '国家企业信用 信息公示系统' 了解更多登记、 各案、许可、监 管信息。

4

称 广东信一检测技术股份有限公司

米

型 其他股份有限公司(非上市)

法定代表人 邱奶舞

经营范围

专业技术服务业(具体经营项目请登录广州市商事主体信息公示平台查询,网址: http://cri.gz.gov.cn/。依法须经批准的项目,经相关部门批准后方可开展经营活动。)

注册资本 壹仟万元 (人民币)

成立日期 2019年01月30日

营业期限 2019年01月30日至长期

住 所 广州市黄埔区瑞泰路7号自编二栋(部位:二 楼203房)

登记机关

国家企业信用信息公示系统网址: http://www.gsxt.gov.cn

市场主体应当于每年1月1日至6月30日通过 国家企业信用信息公示系统报送公示年度报告 国家市场监督管理总局监制

附件 2 土壤采样原始记录表

特別語言: 2023-06-009 特別語文本 特別表現 大学 大学 大学 大学 大学 大学 大学 大							上壤分	土壤采样记录表	录表							
現出計・	检测编号: □单位名和	2023-06-00 %/ 囚 项目名标	39 练: 揭阳市,	检测是 最源美佳环保有限	类别: 委員公司土壤	托检测、地下对	K环境自4	J. E. S.			多多	JD 描:	2023年6月8日 四日//166-2004:97日	TT019-2	010	
特品編号 Akm A	地址: 揭 即 采样类型:	田市掲亦区王 口次田土采料	溶镇东径 業 □建设页	路尾欧晟电厂杂 页目土壤环境评价	2 检测采样	口污染。	E枚检测-	上壤采样 []场地源]]重点行	天气状况	心・場 地調査土壌检測・ 乙 其他。	自分涉	3	
特品編号 編号 名称 (全45) 深度(m) 气味 颜色 质地 湿度 根系 数量 存器 検測項目 R202206009 2673-48 R202306009 R2023		样品瓶	采样点		采样	特品	採品	十一	一一	植物	米杯			迷	保存	米样
R202306009 M831- M824 M826008 A	样品编号	影	公教	(处称)	深度(m)	气味	领色	质地	遊遊	根系	数量	松	检测项目	米	条件	时间
TR202306009	TR202306009	M831. M838			2.0		4				4+1	C+D	VOCs	V		17:0
RE202306009	TR202306009	/			- 2		南、南、赤	砂廠工	學	K		В	SVOCs、水分、石油烃 (Clo-C40)	2H		
TR202306009	TR202306009	/		F: "P 59'54"			Į.				-	A	神、筍、六价铬、铜、铅、 汞、镍、银、锡、brī 值	部, A		17:05
TR202306009	TR202306009			N: 23° 3926"		101					1+I	C+D	VOCs	40		
TR202306009	TR202306009										-	В	SVOCs、水分、石油烃 (Clo-C40)	Zβ ≪		
注: (1) 顔色: 黒、暗栗、暗橋、暗灰、栗、棕、火、紅紫、灯、紫、紅、橙、黄、浅黄等; (2) 原地: 砂土、砂葉土、希葉土、中壤土、星葉土、組土; (3) 湿度: 干、湘、湿、重潮、接離; (4) 气味: 无、谷雄、强烈 (5) 样品容器: A 聚乙烯密封袋: B 250ml 棕色/ 口玻璃瓶: C 聚四氟乙烯-硅胶衬垫螺旋盖的 40ml 綜色玻璃瓶: D 60ml 棕色/ 口玻璃瓶; E 500ml 棕色/ 「口玻璃瓶; F 1000ml H 250ml 長衛 口珠。	TR202306009	\								i.	Т	¥	神、镉、六价铬、铜、铅、 汞、镍、银、锡、hl值	船, A		
(4) 「年: 元: 名後、張高、 (5) 样品容器: 元: 名後、張高 (5) 样品容器: 元: 名後、張高 (5) 样品容器: 元: 名後、現立が密封袋: B 250ml 棕色产口玻璃瓶: C 葉四類乙烯-硅胶柱整螺旋盖的 40ml 综色玻璃瓶: D 60ml 棕色产口玻璃瓶: E 500ml 棕色/ 「口玻璃: F 1000ml H 250ml 具塞牌口棕色玻璃瓶: 1 其他 (6) 茶件工具: 金属样品使用文学: 半样发件品使用转掌; 有机样温使用到力及非扼动采样器 (一次性注射器分: (7) SVOCs、石油超(C10-C40)、六价格、氧化物均平端, 不保空气: VOCs 用 C 型样品服果集約 5g/瓶: VOCs: 40ml 采样瓶预先加入 10ml 甲醇保护液: 金属样品采集约 11 (8) 保存条件: A 样品均 4 C以下冷凝, 選先保存: B 样品常温保存: C 其他: (8) 保存条件: A 样品均 4 C以下冷凝, 選先保存: B 样品常温保存: C 其他:	注: (1) 颜色: 編 (2) 页地: 砂	1、蹈栗、臨橋、 1十、砂簾土、棉 1番 8m m am	72	帮、灰、红棕、黄棕 土、星壤土、粗土;	、 決場、 红	商、商、	、浅黄等;									
(5) 特品容器: A 聚乙烯密封袋: B 250ml 特色广口玻璃版: C 聚四氧乙烯-硅胶衬垫螺旋盖的 40ml 特色 水色 内 250ml 特色 「口玻璃: F 1000ml H 1250ml 日 250ml 特色 「口玻璃: F 1000ml 日 250ml 日 250ml 特色 「口玻璃: F 1000ml 日 250ml 日 250ml 特色 「口玻璃: F 1000ml 日 250ml 日 250ml 特色 「口玻璃: F 1000ml 日 260ml 日 200ml	(4) 气味: 无	1. 经徵、强烈	i learni.													
(6) 米样工具:金属样品使用本作:半挥发柱品使用執導;者机棒品使用利力及非抗効果措置 (・次性注射器); (4) SVOCs、石油烃(Clo-C40)、六价格、氧化物均采滞,不解空气; VOCs 用 C 型样品瓶采集約 Sgi瓶: VOCs: 40ml 采样瓶預先加入 10ml 甲醇保护液: 金属样品采集約 II (8) 保存条件: A 样品均 4 C以下冷藏, 還光保存: B 样品常温保存: C 其他: (8) 保存条件: A 样品均 4 C以下冷藏, 還光保存: B 样品常温保存: C 其他: (2) 複次条件: A 样品均 4 C以下冷藏, 這光保存: B 样品常温保存: C 其他: (2) を えんか えんか えんか えんか しん 後週 人员: 光が しん かった かん しん はん	(5) 样回答器 H 250ml 具卷操	* A 聚乙烯密苯二乙棕色胺医糖: 1	校: B 250ml 其他	標色广口玻璃瓶: C	発四個人を	8-年股村	空螺旋 語的	40ml 棕色根	(過期: D e	iOml 松色!	一口玫瑰脂	; E 500ml	棕色/	田丁口 製造	斯. G	東
版、超光保存: B 样品常温保存: C 其他:	(6) 采样工具 (7) SVOCs,	: 金属样品使用 石油烃(C10-C40	本作: 半挥; 9. 六价格。	发样品使用铁铲;有 氰化物均深满,不降	机样品使用	制刀及非 33用C型	优别采样器 样品拖采纳	(一:次性注) [约 5g/瓶: N	沿路>; /OCs: 40m	n 米林瓶]	9先加入 1)ml 甲醛保	护液:金属样晶聚集约 IKg			
[24] 复核: 斗艺	(8) 保存条件	:: A 样晶均 4℃	一	並光保存; B 样品常验	晶保存: CJ											
	检测人员:	治治力	Suf.	le	氫	版:并	tis vot			中核:	产	Et.	4m)	第 页 共 / 页	 #	\equiv
			kë													

广东信一检测技术股份有限公司记录表式

土壤采样记录表

检测类别: 委托检测

检测循号: 2023-06-009

□单位名称/Q项目名称:揭阳市**晟源美佳环保有限公司土壤、地下水环境自行监测**

地址: 揭阳市揭东区玉褶镇东径路尾欧晟电厂东侧

核测依据: N HJ/T166-2004;N HJ1019-2019 检测日期: 2023年6月8日

采样类型:口农田土采样 口建设项目土壤环境评价检测采样 口污染事故检测土壤采样 口场地调查项目 口重点行业企业用地调查土壤检测 🗹 [[他, **值约整剂**] 天气状况:路

7:35 17:52 13:41 13:29 米茶 时间 保存 条件 •T. < 神、镉、六价格、铜、铅、铅、 **屏、隔、穴价格、铜、铅、铅、** 汞、镍、银、锡、pH值 锡、pH值 SVOCs,水分、石油烃 SVOCs、水分、石油烃 检测项目 (C10-C40) (C10-C40) **汞、镍、银、** 来样 容器 CED 于 \simeq 0 4 Z, 米祥 数审 4-1 4+1 板系 X R **州** 湿度 原河 學 初十 + 海上 质地 50 颜色 本品 崃 西长 世世 深度(皿) 气味 12 14 0. -0.3 米祥 Ö E: 1,629' 55" N: 23° 39' 26" 经纬度 (坐标) 采样点 872 公蓉 M763. M762 8172.77(2) M806, M80) 711. 712 样品瓶 编马 Jotho 04/03 04207 04.203 04102 R202306009 样品编号 R202306009 R202306009 R202306009 R202306009 R202306009 10/10

生: (1) 颜色: 黑、暗栗、暗棕、嵴灰、栗、棕、灰、红棕、黄棕、浅棕、红、橙、黄、浅黄等;

- (2) 质地:砂土、砂壤土、轻壤土、中壤土、重壤土、黏土;
- (3) 湿度: 干、潮、湿、豆湖、极潮;
- (4) 气味: 无, 轻微, 强烈
- (3) 样品容器:A 聚乙烯密封袋:B 550ml 特色广口玻璃瓶:C 聚四氟乙烯 击股衬垒爆旋盖的 40ml 特色玻璃瓶:D 64ml 特色广口玻璃瓶:B 500ml 棕色广口玻璃瓶:C 环刀; II 250ml 具塞摩口棕色玻璃瓶; 1 其他
 - (6) 梁梓工具:金属样品使用木铲;半挥发样品使用铁铲;有机样品使用到刀及非绒动采样器(一次性注射器);
- (1) SNOCs,石道总(Clo-C40)、大价名、单次物均来流,不管空气,NOCs 用 C 曼祥品商来集的 2g/版;NOCs:40ml 深样被预先点入 10ml 甲華保护後,金属梓田系集约 1Kg; (8) 保存条件: A 样品均 4℃以下冷藏,避光保存: B 样品常温保存: C 其他;

極当人员: た(いん) マナ

复核:汗水丸

|国 # ïK 紙

土壤采样记录表

□单位名称/区项目名称:揭阳市晟源美佳环保有限公司土壤、地下水环境自行监测 检测类别: 委托检测 地址: 揭阳市揭东区玉滘镇东径路尾欧晟电厂东侧 检测缩号: 2023-06-009

检测依据: 12 HJ/T166-2004;12 HJ1019-2019 天气状况: 18 检测口期: 2023年6月8日

	来样	回担	10:00		90:01			
San	保存 米	条件						
T.	迷	※	A	A	W	A	4	V
采样类型:口农田土采样 口建设项目土壤环境评价检测采样 口污染事故检测土壤采样 口场地调查项目 口重点行业企业用地调查土壤检测 乙其他: 匐朽 꿀w		检测项目	YOCs	SVOCS, 水分, 石油烃 (Cro-Cao)	神、镉、六价铬、铜、铅、 汞、镍、银、锡、pH值	VOCs	SVOCs、水分、石油烃 (C ₁₀ -C ₄₀)	阿、镉、六价铬、铜、铅、 汞、镍、银、锡、pd 值
N.企业用	米样	離 染	Q+O	В	V	Q+3	8	€Ľ
口重点行	采样	数量	4+1	-	1	4+1	-	-
查项日]	植物	最終		か				
□炀旭遍	上權	湿度		城				
上壤采样[中	质地		なす				
H 本 本 を が は に に に に に に に に に に に に に	世	颜色		#6:				
口污染量	世里	***		4,		6		
金测米样	米井	深度(m) / (味	2.0	()	0.2.02			
[日土壤环境评价]	经纬度	20000			E: 11629' 52"	N: 25° 29' 24"		
口建设项	采样点	各类			AT.			
□农田上采样	样品瓶	悪	STTC. ITTL	_	/		\	/
采样类型:		本 品 器 の	TR202306009 of /o1	TR202306009	TR202306009	TR202306009	TR202306009	TR202306009

生。(1) 颜色,黑、暗栗、暗棕、暗灰、栗、棕、灰、红棕、黄棕、浅棕、红、橙、黄、浅黄等。 (2) 质地: 砂土、砂壤土、经壤土、中壤土、重壤土、黏土;

- (3) 湿度: 干、潮、湿、豆淘、极潮;
- - (4) 气味: 无、轻微、强烈
- (3) 样品容器:A 聚乙烯溶封袋:B 250ml 棕色广口玻璃瓶:C 聚因氮乙烯-硅胶种盐螺旋盖的 40ml 落色玻璃瓶:D 66ml 棕色广口玻璃瓶:E 500ml 棕色广口玻璃瓶;G 场列; H 250ml 具塞磨口棕色玻璃瓶; 1 其他_
 - (6) 采样工具:金属样品使用木铲; 半挥发样品使用铁铲; 有机样品使用割刀及非扰动采样器 (一次悟注射器);
- (7) SVOCs,看迪拉(C10-C40)、大价格、氰化物均果滴,不留空气,VOCs 用 C 型棒品瓶果集约 Sg渐;VOCs,40ml 米林瓶预先加入 10ml 甲醇依护液;金属样曲来集约 IKg;
 - (8) 保存条件: A 样品均 4℃以下冷藏, 避光保存; B 样品常温保存; C 其他;

極圏人母: ユナー いないわ

井页 第一页

表式
可記录表
1000
分有馬
大阪
過技
加一個
一新

土壤采样记录表

检测类别, 委托检测

□单位名称/囚项目名称:揭阳市晟源美佳环保有限公司土壤、地下水环境自行监测 检测编号: 2023-06-009

检测日期: 2023年6月8日

检测依据: Z HJ/T166-2004;Z HJ1019-2019 天气状况:B 地址: 揭阳市揭东区玉滘镇东径路尾欧晟电厂东侧

	米样	昨间	10:32		11:28	(0:39		11:33
1	条 本	条件	- K	V	A	A	Ą	- F(
		检验反正	VOCs	SVOCs、水分、石油烃 (Cn-C40)	神、镉、六价铬、铜、铅、 汞、镍、银、锡、pll值	VOCs	SVOCs、水分、石油烃 (C10-C40)	神、镉、六价格、铜、铅、 汞、镍、银、锡、pil 值
	采样	松器	C÷D	В	A	C+D	В	٧
	采样		4+1	П	П	4+1	-	-
	植物	松然		145			14	
. N. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	土壌	部成		1-1			+	
	上塊	型型		无法将砂塘土			, 法格,砂塘土干	
	理类	颜色		恭			以花	
	世世	人人		14			19	5
	米样	深度(m) 气味	0.1		0-0.2	1:1	(1-1-1
	经纬度	(坐标) 深度(m				N: 25° 39' 25"		
	采样点	名称						
	样品瓶	· · · · · · · · · · · · · · · · · · ·	1272, 73TM		/	M716,2592 AT2	/	/
		样品觸吊	TR202306009		TR202306009			TR202306009

注:(1) 颜色:鞲、噎栗、暗糯、暍水、栗、糯、水、红糯、黄糯、浅糯、红、橙、黄、炭黄等:

- (2) 质地:砂土,砂壤土、轮壤土、中壤土、阜壤土、黏土;
- (3) 湿度: 下、潮、湿、重潮、松潮;
- (4) 气味; 无, 轻微, 强烈

(3) 萨油幹路,A 聚乙產產封錄,B 250ml 排色/"口數與權。C 聚四萬乙烯-油胶對學與羅維的 40ml 游色级精維,D 60ml 综色/"口吸磨瓶" E 500ml 资色/"口玻璃瓶" F 1000ml 棕色/"口玻璃瓶" G 环71; H 250ml 貝塞摩口棕色玻璃瓶; 1 其他

(6) 采样工具:金属样品使用木铲;半挥发样品使用柴铲;有机样品使用每刀及非扰动采样器(一次性注射器);

(7) SVOCs,石油悠(C10-C40)、大价格、低化物均采淌,不留空气,VOCs 用 C 型群品框采集的 Sg/瓶:VOCs;40ml 采样面质光加入 10ml 甲醇保护液;金属样品采集约 IKg;

(8) 保存条件: A 样品均 4 C以下冷藏, 避光保存; B 样品常温保存; C 其他;

审核:

第1页 共多页

	_	米	至	22		=	0		-
	9-2019	保存	茶	V	A	A	A	V	
	检测编号: 2023-06-009 检测类别: 委托检测 □单位名称/区项目名称:揭阳市 最源美柱环保有限公司土壤、地下水环境自行监测 检测依据: 区 HJ/T166-2004;区 HJ1019-2019 地址: 揭阳市揭东区玉滘镇东径路尾欧晟电厂东侧 聚样类型: □农田土采样 □建设项目土壤环境评价检测采样 □污染事故检测土壤采样 □场地调查项目 □重点行业企业用地调查土壤检测 ☑货他: 卤行 迄 //		检测·贝田	\$20Å	SVOCs、水分、石油烃 (Clo-C4o)	神、編、六价格、铜、铅、 汞、镍、银、锡、pll 值	VOCs	Sv0Cs、水分、石油烃 (Clo-Clo)	Tall 6007 N. 7.6. 460 April 1800
	9日期: 2023 年9]依据: IZ HJ/ 天气状况: IS 比企业用地调查±	※ 样	容器	Q+D	В	V	Q+3	8	
	格灣 格灣 J車点行	米梓	数量	1+1	1		4+1	_	
	在 项目 L	植物	故 ※		14			14	8877788
录表	□塚田圓	土壌	沿		1 -1	-		1+	888
土壤采样记录表	5.监测 七城采样 [選出	质地		元 成於,仍懷工			大番旅物十十	
土壤为	水环境自 4 事故检测-	出世	更		本本			相流	
	元检测 、地下7 □污染。	- 世	巻		4			4	
	检测类别:委托检测保有限公司土壤、地下 以了东侧 3.丁东侧 8.评价检测采样 口污染	米样	深度(m) 气味	3.		30-3.2	4,7		07 1
	检测编号:2023-06-009 □单位名称/区项目名称:揭阳市 及源美佳环保有限公司土壤、地下水环境自行监测 地址: 揭阳市揭东区玉滘镇东径路尾欧晟电厂东侧 艰样类型:□农田土采芦 □建设项目土壤环境评价检测采拌 □污染事故检测土壤采	经纬度	(坐标)			AT. E: 116 29 '53"	N: 25 29 '25"		
	9 K:揭阳市 客镇东径 日建设项	采样点	名称			NT.	2/0		
	检测编号: 2023-06-009 □单位名称/区项目名称 地址: 揭阳市揭东区玉沼 聚样类型:□农田土采祥	样品瓶	影	Mb7. Mb76		/	M755. M757		
	检測编号:□単位名数 □単位名数 地址: 揭际 采样类型:		杯品貓巧	TR202306009	TR202306009	TR202306009	10000	TR202306009	000000000000000000000000000000000000000

XYT-JS-XC-0273

广东信一检测技术股份有限公司记录表式

生;(1) 颜色;黑、暗栗、暗棕、暗灰、栗、棕、灰、虹棕、黄棕、浅棕、红、橙、黄、浅黄等; (2) 质地:砂上、砂壤土、轮壤土、中壤土、重壤土、黏土;

2403 R202306009

- (3) 藻度: 干、潤、湿、压潮、极潮;
 - (4) 气味; 无、轻微、强烈
- (S) 样品容器:A 聚乙烯苯封线:B 250ml 棕色广口玻璃瓶:C 要四氧乙烯-硅胶衬单螺旋盖的 40ml 棕色玻璃瓶,D 60ml 棕色广口玻璃瓶;E 500ml 棕色广口玻璃瓶;C 环切; H 250ml 月迷磨口棕色玻璃瓶; 1 其他
 - (6) 采样工具,金属样品使用水铲,半挥发样品使用铁铲;有机样品使用割刀及非扰动深样器(一次供注射器);
- (7) SVOCs,石油粒(C10-C40),大价格、氰化物均采淌,不宿空气,VOCs 用 C 型桿菌瓶采集约 5g/瓶;VOCs,40ml 采祥瓶斑亮面入 10ml 甲醇保护液,金属样面采集约 1kg;
 - (8) 保存条件: A 样品均4℃以下冷藏,避光保存; B 样品常温保存; C 其他:

からいかん **松圏人田: 200**

第2页 共3页

广东信一检测技术股份有限公司记录表式

土壤采样记录表

检测类别: 委托检测 **检對維导**: 2023-06-009

□单位名称/D项目名称:揭阳市晟源美佳环保有限公司土壤、地下水环境自行监测

检测依据: Z HJ/T166-2004;Z HJ1019-2019 检测日期: 2023年6月8日 天气状况: 可 地址: 揭阳市揭东区玉滘镇东径路尾欧晟电厂东侧

三元 =: 2 11:20 米样 条件 采样类型: 口农田土采样 口建设项日土壤环境评价检题采拌 口污染事故检测土壤采样 口场地调查项目 口重点行业企业用地调查土壤检测 🗹共他:🥝 🦰 🔊 🖊 < < V M、镉、六价铬、铜、铅、 砷、镉、六价铬、铜、铅、 末、镍、银、锡、pll值 汞、镍、银、锡、阳值 SVOCs、水分、石油烃 SVOCs、水分、石油烃 检测项目 (Cin-Cin) (C10-C40) VOCs 松器 来样 C+D C+D m <. 2 V. 米样 数量 1+1 yeard = 植物 被然 · R 14 十二十 湿度 1+ 1+ 十遍 质地 +1 松工 新旅鸡 抽流 颜色 出世 本品 少 深茂(m) 气味 14 Sewar. 9-9-40 0.6-4-9 米森 6.7 6.7 E: 116 29'53" N: 23° 39'25" 经纬度 (坐标) 采样点 AT2 名称 W810, M811 M750, 2736 151, 2731 2765.2766 样品瓶 警号 21720 0) 50 TRZ02306009 02572 02.50 样品编号 0,511 R202306009 R202306009 0250 R202306009 R202306009 R202306009

注: (1) 颜色: 黑、暗栗、暗棕、暗灰、栗、棕、灰、红棕、黄棕、浅棕、红、橙、黄、浅黄等

- (2) 质地;砂土、砂壤土、径壤土、中壤土、重壤土、黏土;
 - (3) 湿度: 十、河、湿、重湖、坡湖;
- (4) 气味: 无, 轻微、强烈
- (2) 样品举器:A 聚乙落密封袋:B 250ml 综色厂口玻璃瓶:C 聚四氟乙烯-硅胶衬-地螺黄谱的 40ml 棕色玻璃瓶:D 60ml 棕色厂口玻璃瓶:B 500ml 棕色厂口玻璃,F 1000ml 棕色厂口玻璃瓶;G 环刀; H 250ml 具塞蔣口棕色玻璃瓶: 1 其他
- (6) 采样工具:金属样品使用水铲; 半挥发样品使用铁铲; 有机样品使用剂刀及非扰动采样器(一次控注射器);
- (1) SVOCs,石油总(C10-C40),六价格,阿化物均深端,不留空气; VOCs 用C型样品原来集约 Sg版; VOCs; 40ml 采样瓶顶钻加入 10nl 甲醇保护液; 金属棒出来集约 1Kg; (8) 保存条件; A 样晶均 4 C 以下冷藏, 避光保存; B 样品常温保存; C 其他;

いるいか

第3页 共3页

土壤采样记录表

广东信一检测技术股份有限公司记录表式

检测循曰: 2023-06-00。 □单位名数/图项目名称: 揭的內裝/成英後政係有限公司工廠、切以次以及回名返刘

检测依据: 名 HJ/T166-2004;岁 HJ1019-2019 天气状况: **6**烯 检测日期: 2023.6.8

样品瓶 米样点 经纬度 来样 样品 #日編号 名称 (坐标) 深度(m) '(味 TR202306の9 / 8T1 以23°39′26" 03 そ						-		-						1. 20	
置む 名称 (坐标) E: i16 ² 対 54 ²	47	样品瓶	米样点	经纬度	米本	电类	坦	土塊	半海		米林	米棒	I Profession	条作	米祥
E11624' 03	作品劉力	製品	公蓉		深度(皿)	*()	须色	原地	受受	受 ※	数曲	器	南道吳正	※ 作	包包
	TR202306009	\	178	K; 116 24 54"	6.3	14	#01	恐院 海州	斯	12	_	Z	茶品!	₹'	A 17:07
				8											
発推さ 非 鏡 2 なお 存作 本方 14 4 4 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1	四 公司 海南岛	おきなら 単次1		古 古 古	25. th	非 湖	は井谷								

至 (1) 颜色:黑、暗栗、暗棕、暗灰、果、棕、灰、红棕、黄棕、浅棕、红、橙、黄、浅黄等;

- (2) 质地; 砂草、砂壤土、轮壤土、中壤土、重壤土、黏土;
 - (3) 湿度: 十, 遵、驺、甲觜、极翘;
 - (4) 气味; 无, 轻微, 强烈
- (2) 样品举器:A 聚乙溶素封缐:B 250ml 核色广口玻璃瓶,C 異四氮乙烯-硅波衬基螺旋涂的 40ml 棕色玻璃、D 60ml 棕色广口玻璃瓶;E 500ml 棕色广口玻璃瓶,C 环汀。 H 250ml 具寒磨口棕色玻璃瓶; 1 其他
- (6) 采样工具, 金属及无机样品使用竹片或木(铁)铲, 有机样品使用木(铁)铲及非扰动采样器(一次性连维器),
- (1) SNOCs,石油粒(C10-C40)、大价格,原化物均采淌,不留空气,NOCs 用 C 型样品瓶来集约 Sg/瓶,NOCs,40ml 采样瓶预先加入 10ml 甲醇炔矿液,金属样品采集约 1Kg;
- (8) 保存条件: A 样品均 4℃以下冷藏, 避光保存, B 样品常温保存, C 其他:

後週人员: 子子 % いらろ

复核:汗药

中核: 343 企业代表: /

共一页 第 页

	口校田十米	イスが不存する。	名 	BJJ:1898的18 4 k k z k k k k k k k k k k k k k k k k	機造	事故检测二	上壤 彩样 [二场地调	在项目	八重点行	L 企业用班	采样类型:口农田土采样 口建设项目土壤环境评价检测采样 口污染事故检测土壤采样 已场地调查项目 口重点行业企业用炮调查土壤检测 乙 其他: 怎么 多 >>	公學	
桂田總合	样品瓶	米样点	经纬度	系样 样品 探度(m) 气味	4 4	華 詹	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	当 四	益 参 M	水 車 車	米林家	· 李 · · · · · · · · · · · · · · · · · ·	保存	米
	备小	名巻	(坐称)	A SANS	X.	1	2	×/ ﷺ	Ę	H XX	HALL C		条件	国国
(22030 06009)	1907	各推序 空	`	\	_	\	\	\	\	1	J	2000	æ	(0:19
12003 06 009	2902	公都必	`	`	`	\	1	_	\	J	S	5201	Ø	7:10
(1) 颜色, 點、暗栗、暗棕、暗灰、栗、	題果、 題祭、	題次、際、棕、	标、灰、红棕、黄棕、浅棕、红、橙、黄、浅黄等	. 沒樣、如	海 報	, 浅蓝锑.								

(2) 质地, 砂土、砂塘土、轮壤土、中壤土、重壤土、黏土,

(3) 程度: 干、潮、湿、重淘、极润;

(4) 气味; 无, 轻微, 强烈

(5)样品容器:A 聚乙烯格封袋:B 250ml 棕色广口玻璃瓶;C 浆医瓶乙烯-硅胶衬整螺旋盖的 40ml 棕色玻璃瓶,D 60ml 棕色广口玻璃瓶:E 506ml 棕色广口玻璃;F 1000ml 棕色广口玻璃部,G 环力; H 250ml 具塞磨口棕色玻璃瓶: 1 其他

(6) 采样工具, 金属及无机样品使用竹片或木(铁)铲, 有机样品使用木(铁)铲及非扰动采样器(一次性注射器),

(7) SVOCs、石油烃(C10-C40)、六价格、氧化物均采满,不留空气; VOCs 用 C 型样品瓶采丝約 5g/雅; VOCs; 40ml 采样就预先加入 10ml 甲醇炔扩液;金属拌品采集约 IKg;

(8) 假存条件: A 样品均 4℃以下冷藏,避光保存; B 样品常温保存; C 其他;

检測人员: 子本 みにわた

复核: 各%

企业代表: /

第/页 共 页

附件 3 检测样品流转单

			世	: 品 流 转 甲(一)			
检查验: 201/-06-009	於:	华时间:	7 # 200	系样时间: ゝ々よ〉年 7月/2 日;是否跨日采样:口是(跨日至 月	三): 四部:		
	时30分;	0分;交样人: 60/3	ha/34		7分样人(样品	管理员): 在多	
2 样品编号	4 紫	林留	保存运輸方式	分析项目	本 學 學 學 學 學 學 學 學 學 學 學 學 學 學 學 學 學 學 學	领样人	条注
Can & color of old offer	14,514	本大子	#A. 3 DADBUYE	鸡和味、南遇可见场	Da Che Cle		
0}10		1	DADUBC	次@後,7DS	Darde de		
		~	DADISIDE	海海路、夏九名、45	Das Edit Oc		
		3	DAMBEVC	Fe.Ma.Al. Na	Da Zho Zho		
		~	DADBER	Cu. 2 16. (d.	DAS DA DC		
		~	□ And Budic	£.	Cuartato Mc		
		7	Darbade	A5.5e	Cha Chi Chic	了罗春秋	
		~	Daldede	超光 山湖北東	Zá Zb Zc		
		~	CIADBER	- 1. 16 CB	CNS CDNS CDNS		
		~	Памварс	THE REAL PROPERTY.	ZaZlbZlc		
		~	ПАПВИС	表如歌	Chá Exte Exc		
		~	Classification	· 应用	Da Da Da		
		~	DAMBING	and the graph	-12 -12 -12 -12 -12 -12 -12 -12 -12 -12		
		~	CACIBING	五城面站、海面站 像化化、水吸水粉	Za Zb Zc		
		9	TAMBIÁC TAMBIÁC	6 Madeado Japa Kg. Dank F. B.	da Ob Ac		

E

#

广东信一检测技术股份有限公司记录表式

样品流转单(一)

_; 分样时间: 7月 19日 8 时3º分: 接样人/分样人(样品管理员): _; 采样时间; >> 13 年 7 月 12 日; 是否跨日采样; 口是 (跨日至 月 日); CP含; 交样时间; 7 月 12 日 23 时3。分; 交样人; 分2013 检測編号: 201/-06-109

样品编号	林 茶 型	禁 計品 国	保存返 輸方式	分析或目	本 存	领样人	各注
-	当なり	_	NOBER C	00年10年,南周日间21日	Za ZB ZC Zc		
	# 43 \	-	DABBAC	24. A. A. A. D. S. T. D. S.	Cha Chic Cic		
		-	DAD8IDÉ	分號站 雪花花 143	Da Db Dc		
+		_	DADBOC	Fo Mr. A. Na.	Da Do De		
+		_	DADBDC	(2n. P. Cd.	Za Zla Zlo		
-		_	DAUBOC	H	Za Zb Zc		
		-	DADBOC	A: 50	Challes Dic	四条成	
		-	CIALIBOC	· 一场	Da Da Ba		
+		_	UADBOC	7/4/20	DA DE De		
+		-	DADBOC	7.46.89	DA DAS De		
_		-	DADBDC	Control of the second of the s	ZZ ZZ ZZ ZZ ZZ ZZ		
+		-	DACIBOC	五	Das Zafe Zic		
		-	DADBOC	MICK 87	Da Ob Clc		
		-	ОАОВОС	山北南北部 海湖湖。河南江湖、湖南省	Za Zb Zbc		
T		-	DADIBOC	一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	Sa Zib Zic		

注: 1.保存运输方式: A 常温递光, B 固定剂、C (04°C) 低温避光, 样品检查: a 样品完好、b 数量齐全、c 标签完整清晰;

サイゴ

第2页

2.此单与分析原始记录一并交至质量控制部归档保存

广东信一检测技术股份有限公司记录表式

样品流转单(一)

: 分样时间: 7月 13日 8 时 3%;接样人/分样人(祥品管理员): 月); 口苍; T 检测编号: 2025-16-09 ...; 采样时间: 20-15 年 7 月 12 日; 是否跨日采样: 口是(跨日至交样时间: 7 月 12 日 25 时 30 分; 交样人: 介かが 4 ...; 分样时间: 7 月 1 3 日 9 时 20-05

世								5%					y-1		
领样人								> 网春秋							
本 存 由 在	四名是公	Da Cho Dic	Da Orto Oc	CAS CASE CAC	DA ZD6 Dc	Da Date Dic	Zá Zho Zíc	Za Zb Zc	Da Do Do	Chá Chúb Chó	Da Caba Dic	Za Zho Zho	Día Día Díc	рядь Дс	DE TAKE DE
分析项目	鸣和水、卤眼可见物	第200 TUS	路職務、寬公格、145	Fo. Mr. Al. No	Cu. In. Pb. Cd	2	As. Se	山山水在西北水	1.1 C.	(426.37)	The state of the s	72		不适為然 格克里斯 第四四名 人姓氏斯	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
保存运 输方式	DADWGC	DADSPC	Sasasa	DAIDRING	Пафвис	Парвыбс	DANGERIC	DAMAGE	ONDREGC	Daldedic	DADBAC	DAMBGC.	ПаМвибс	DACIBRAC.	, ,
林品数臣	_	-)	_	_		-	_	_	_	-			1	
林紫檀	7 24.6	24													-
样品编号	S20210/w/011111														
性中	1														

注:1.保存运输方式:A 常温遴光、B 固定剂、C (0-4°C) 低温避光;样品检查:a 样品完好、b 数量各全、c 体签完整清晰;2.此单与分析原始记录一并交全质量控制部归档保存

三 イ イ

第~页

•

(一) 東 林 浣 표 样

田),四百二 E 检测编号: <u>プロゲーob/-ob/-ob/-</u>: 采样时间: プリ 年 7 月 12 日: 是否跨日采样: 口是 (跨日至交样时间: 7月12 日 23 时 39 分: 交样人: <u>インパネー ...</u>: 分样时间: 7月 13 日 8 时 3の分

各江 领样人 心極受 _; 分样时间: 7月 13 日 8 时30分;接样人/分群人(样品管理员):_ □a □b □c Ra Prope □a □b □c 本 母 三乳甲烷、吸收、煤、野 分析项目 OADBOc 保存运 输方式 DADBOC UAMBEDC. DADRDC DADSDC OACIBOC DADBDC DADBDC DADIBAC DADBOC DADAC DAD8DC DADBOC 体 数 量 江华中的 本 型 深 型 12170 pmgc57025 样品编号 性中 4

注:1.保存运输方式:A 常温避光、B 国定剂、C (04℃) 低温蓬光, 样品检查; a 样品完好、b 数量齐全、c 标签完整清晰; 2.此单与分析原始记录一并交至质量控制部则档保存

N N # 万里 影

样品流转单(一)

; 分样时间; 6月9日8时3%;接样人分样人(样品管理员); 日). 图: 检测编号: 2023-06-209 : 采样时间: 2023 年 6 月 8 日; 是否跨日采样: 口是 (跨日至交样时间: 6 月 8 日 22 时 37分:交样人: 3-204 ... 3-24时间: 6 月 9 日 8 时 3-9分

-		10.00	177	141		0.000		
	样品编号	茶草	林品 数量	条存运 输方式	分析项目	计 俭品 哲 哲	领样人	各注
. 0	[Ranzo 603] 0/101. 02/01	した極	745	DADBOY	> vocs	Da De Die	_	
_	9314.0410.04001	\neg	_			Da The Dic	5 MR ~	
27	Thousaboof olia, 02/02	5土地	5	DADBRAC	\$ SUOCE	Table De	landy	
	03102.04/02.04202		_	ПАПВПС		Za Za Za Za)	
	7Rzazobon9 0/103.02/03	一一一一	63	Оловой	人 20 16 3 16 16 16 18 表 18 18 48 18 18 18 18 18 18 18 18 18 18 18 18 18	四部品	一分番と	
	03/03.04/03.04203			ПАПВПС		□a □b □c		
	4 TR202306009 02 511	站场3分	- 70	DADBERC	\$ MC \$	Cha Zib Dc	7 (82, 1	
	5 TR202306009 22512	30.63 A.A.	,	DAD8134É	51000	西a西も石c	130	
		歌圖光		DADBINC	在城上,不能到一部、元、编、农、锡、DH格 Ba Bb Bc	Era Erb Erc	25. 先不	
		全程序验	_	ПАПИДЕ	200	品的方	ZWB2	
	1R20230609 02 531 建梅文白	及称文句	\	DAD8DK	WCS	在8日bdc	(en(
				DADBDC		□a □b □c		
						□a □b □c		
						□a □b □c		
				DAD8DC		□a □b □c		

作: 1.保存运输方式: A 常温递光、B 固定剂、C (0-4°C) 低温基光; 样品检查: a 样品完好、b 数量齐全、c 标签完整清晰; 2.比单与分析原始记录一并交至质量控制部归档保存

页

#

E

松

附件 4 土壤钻孔采样记录单

广东信一检测技术股份有限公司记录表式

XTY-JS-XC-0810

土壤钻孔采样记录单

地块名称: 揭阳市晟源美佳环保有 隔	2公司土壤、地下	水环境自			270						
采样点编号: ₿TZ		天气:	馬				4	温度(℃): 29	.1	
采样日期: 2023、6、8		大气背射) 值:	0.000	P PF		封袋 P	-		PPM
钻孔负责人: / 钻孔深度	€ (m): 2.0	钻机直往			mm	- 1	101			0.000	1 1
钻孔方法: 液压查冲 钻机型号		Ala ±=	E:	116020	7' 55	y ,	九	- 否移位	: □是	12/1	<u> </u>
地面高程(m): / 孔口高程		初见水色			/		利	急定水位	(m)	. /	
PID 型号和最低检测限: AP ES - VOC	15-5 0.00/ PPor	XRF 型	号利力	最低检	测限:	ExpLo	PER	9000	ک	ing/K	7
钻进 变层 地口地							采样				
深度 深度		PID 读	数					读数			
		(ppm)		Cu	7.n 87.18	Pb 50.45	O.16	Ni	Hg	As	Cr
1 0-20m 機土 . 轻雾 2 3 4 4 5 5 6 6 6 7 7 7 8 8 8 8 9 9	. 7	03n 0.8m 0.13m p. 1.2m 0	206	6.86	111.01	65.76	0.18	18.16	ND ND	456 10 hz 8.70 8.36	52.2
采样人员: 子が ねいか		复核: ↓	153	9			审相	核: 分	SHY		

注:①土质分类应按照《岩土工程勘察规范》(GB50021-2001)中土的分类和鉴定进行识别。②若在产企业生产过程中可能产生 VOCs 污染,则土壤现场采样建议使用 PID 进行辅助判断,同时,每天采集一个大气背景 PID 值。③若在产企业生产过程中可能产生重金属污染,则土壤现场采样建议使用 XRF 进行辅助判断。

土壤钻孔采样记录单

采样点编号: B 丁)		天气: 0克				油	渡(℃): 2	9.5	
R样日期: 2013.6.8		大气背景 PL	D值:	0.000	oPPM	É	封袋 P	ID 值:	0,00	6 prm
占孔负责人:	钻孔深度 (m):	钻机直径:	/	mm						- 17
占孔方法:	钻机型号: /	坐标: Ĕ:	116° 20	9154	11	是	否移位	: □是		hi
也面高程(m): /	孔口高程 (m): ノ	初见水位(r		7		稿	定水位	(m)	: /	
占进 变层	APES-NCS-5 a.po/pfm 地层描述	XRF 型号和	最低检	测限:		RER 采样	9000	<u>t</u> m	8/rg	
深度 深度 土版 (m) (m) 土版	^{地层描述} 5分类、密度、湿度等	PID 读数				XRF	读数	-		
m) (m)	200	(ppm)	Cu	Zn 91,29	Pb	Cd	Ni Z\$\(\rho\rangle\)	Hg	As	Cr 34,9
0-0.5 填土	、									
	ide control	复核: みなる	9			市場	亥: 八	job)		

注:①土质外类应按照《岩土工程勘察规范》(GB50021-2001)中土的分类和鉴定进行识别。 ②若在产企业生产过程中可能产生 VOCs 污染,则土壤现场采样建议使用 PID 进行辅助判断,同时,每天采集一个大气背景 PID 值。③若在产企业生产过程中可能产生重金属污染,则土壤现场采样建议使用 XRF进行辅助判断。

土壤钻孔采样记录单

采样点	编号: A	77			天气:	BE				ýE	度(℃): >1	6	10 - 20 -
		3.6.8						0,000 }	Pm		封袋 P			D.Dm
钻孔负		/	钻孔深度(m): 7. o	钻机工		- 1	mm					0.000	47 (1)
钻孔方	法: 方	压有)	钻机型号: 2	-	坐标:	E:116	2915	5"		是	:否移位	: □ L		<u></u>
	程 (m)		孔口高程(m			k位(i	1 1	/		穏	定水位	(m)	r /	Miles vince v
PID 型	号和最低	检测限:Δ.	DES-VOCC-	C a col PPa	XRF	型号和	最低检	测聚:	EXPID	RED "	3000	50	9/19	
钻进	变层	A		3 0.00///						采样	,,,,,		0/100	
深度 (m)	深度 (m)	土质分	地层描述 类、密度、湿	度等	PID i	卖 数				XRF	读数			
233362	(111)			V.T.030	(ppn	1)	Cu	Zn	Pb	Cd	Ni	Hg	As	Cr
3	0 - 2 om 20 - 38m		,较喜,		1.3m 1.8m 2.3m 2.8m 3.3m 4.3m 4.3m 4.3m 5.3m	0.278 0.261 0.265 0.241 0.216 0.321 0.321 0.186 0.173 0.166 0.141	15.70 6.95 7.59 11.78 6.55 11.74 8.15 9.26 12.11 10.75 27.03	61.58 79.31 49.58 49.02 32.21 65.26	\$635 \$9.81 \$9.81 63.01 75.54 75.47 \$3.42 \$7.27 33.92 24.10 22.52	0.27 0.17 0.17 0.17 0.14 0.13 0.23 0.22	24.09 17.35 19.90 23.21 23.77 12.55 13.89 13.50 (0.37 15.87	ND ND ND ND ND ND ND	8.05 8.40 9.06 8.13 11.93 8.48 8.49 7.36 5.87 4.81 4.42	7.19 60.4 12.05 24.8 25.3 47.09 59.77
7	3.8-7.om	Q 12 P	、旅勤、	7	6.3m	0.116	9.93 11.46	63.56 26.40	62.17 33.28	0.75	28.33 8.32	ND ND	6.47	

注:①土质分类应按照《岩土工程期察规范》(GB50021-2001)中土的分类和鉴定进行识别。②若在产企业生产过程中可能产生 VOCs 污染,则土壤现场采样建议使用 PID 进行辅助判断,同时,每天采集一个大气背景 PID 值。③若在产企业生产过程中可能产生重金属污染,则土壤现场采样建议使用 XRF进行辅助判断。

土壤钻孔采样记录单

CE (MILITAL) — AL (12					VIE	nhs / on	×		
8	大气背景 PI	D值:	0.0001	Pm	白	封袋 PI	ID 值:	0.006	ppm
钻孔深度 (m): ~	钻机直径:	/	ınm						• 200
钻机型号: 一	坐标: 6:				是	否移位	: □是		5
孔口高程 (m): イ	初见水位(1	m) :	//		稳	定水位	(m)	: /	
APES VOCK-S 0.00/7/m	XRF 型号和	最低检	测限:	EXPLO	RFD	9000	5	ng/159	
				1					
	PID 读数				XRF	读数			
	(ppm)	Cu	Zn	Pb	Cd	Ni	Hg	As	Cr 39.6
. Ipa wee. I			77.37						
	8钻孔深度 (m): /钻机型号: /孔口高程 (m): /		8 大气背景 PID 值: 钻孔深度 (m): / 钻机直径: 钻机型号: // 坐标: を: n6° 2 水: 23° 3 孔口高程 (m): / 初见水位 (m): APES VXX ~ S 0.00 PPm 地层描述 分类、密度、湿度等 PID 读数 (ppm) Cu	まれ深度 (m): / 転れ変度: 0.000分 結れ変度: mm ・ mm 結れ型号: 少板: と: n6°29′52 ・ 29′52 孔口高程 (m): / 初见水位 (m): / APES VXX-S 0.00分分 XRF 型号和最低检测限: / 地层描述 分类、密度、湿度等 PID 读数 (ppm) Cu Zn	まれ深度 (m): / 転れ 直径: mm 結れ 運号: // 以こと3・39、24。 孔口高程 (m): / 初兄水位 (m): // XRF 型号和最低检测限: Explo 地层描述 少类、密度、湿度等 PID 读数 (ppm) Cu Zn Pb	大气: 6	大气: g 温度 (で 大气背景 PID 値: o.oso P pm 自封袋 PI	大气: 6	大气: 8

附件 5 地下水监测井洗井记录表

广东信一检测技术股份有限公司记录表式

XYT-JS-XC-0920

地下水采样前洗井记录表

单位/项目名	4称:揭阳	日市晟源美	佳环保	有限公司	月上壤、地	下水自行出					
地址: 揭阳	市揭东区	玉滘镇东谷	路尾欧	:晟电厂东	[侧]						
采样并编号	: 1)ZS				洗井日期	2025.7	. 17				
天气状况:	晴♀	[9]			采样并锁			否口			
采样点地面	是否积水	: 是口	否Ø		采样水 24	小时内是	否降水:	是口?	F D /		
洗井资料: 洗井设备/ 井水深度(m): 3.6	ક	水位井才	立面至升 k体积()	口高度 (m L): 1 7): ∠ . 54 #	ル 井深 :口到地面	(m): b	. oL . bu		
洗井开始时); : [ti])			洗井结束	时间://:1	10				
pH 检验型号/约		电导率机 型号/8		5,727	检测仪型 /编号		東电位检 号/编号	浊度松	金测仪型号/编号		
SX825/XYC	C-064	DDBJ-350/X	YB-003	SX825/	XYC-064	SX825/X	YC-064	WZB-17	75/XYB-005		
现场检测仪 pH 值校正: 电导率校正 氧化还原电 浊度校正: 洗井过程记	1、pH : 1、标符 位校正1 1、标准标	t校准液值、标准缓冲	i: (450	iS/cm	2、标准 2、标准液	液的电导。 的氧化还	率: μ φ ι 原电位点	值: 455 mV		
测量时间	水位. (m)	洗井出 水体积 (L)	水温 (℃)	pH 值	电导率 (μS/cm)	溶解氧 (mg/L)	氧化还 原电位 (mV)	浊度 (NTU)	洗井水性状(颜 色、气体、杂质)		
11:22	2.54	481	30.L	5.94	1911	4.12	147	14	横、无无		
11:40 2.57 50.5 591 1427 4.14 140 17 % , 天天											
11:40											
							1				
)				
方法依据: 水温: GB/T13195-1991 ORP:DL/T1480-2015 PH:HJ1147-2020 浊度:HJ1075-2019 电导率: DZ/T0064.6-1993 DO:HJ506-2009 HJ 1019-2019 其他:水位仪型号/编号: HY.SWJ-I/XYC-043 水温表编号: XYC-038 其他:											
检测人员:	1213	3/10		ŧ	1校. 1分	12	亩核,	43	第 / 页 具 / 页		

地下水采样前洗井记录表

单位/项目名	4称:揭图	市最源美	佳环保	有限公司	引土壤、地	下水自行品				
地址:揭阳	市揭东区	玉滘镇 东名	经路尾欧	. 展电厂东	: 侧					
采样并编号	: A51				洗井日期	2027. 7	.12			
天气状况:	晴口	137-			采样井锁:	扣是否完整	ě: 是口	否口		
采样点地面	是否积水	: 是口	否☑	A1	采样水 24	小时内是	否降水:	是口。召	₹ Ø	
洗井资料: 洗井设备// 井水深度(m): 380	1	水色井木	立面至井 K体积()	口高度(m L): 7): 5 % #	井深 口到地面	(m); %	7u 77	
洗井开始时	间: 8:1	45			洗井结束	时间: 9、2	1			
pH 检测型号/约		电导率标型号/6		100000000000000000000000000000000000000	检测仪型 /编号		原电位检 号/编号	油度档	ò测仪型号/编号	
SX825/XYC	C-064	DDBJ-350/X	YB-003	SX825/	XYC-064	SX825/X	YC-064	WZB-17	5/XYB-005	
现场检测仪 pH 值校正: 电导率校正 氧化还原电 浊度校正: 洗井过程记	1、pH : 1、标符 位校正1、 1、标准相	主校准液值、标准缓冲	I: 14915 溶液值	1630 Tb30	削量値よ& iS/cm mV	2、标准:	液的电导: 的氧化还 (的浊度值	率: / リ ア	レ μS/cm 値: 443 mV	
测量时间	水位 (m)	洗井出 水体积 (L)	水温 (°C)	pH值	电导率 (μS/cm)	溶解氧 (mg/L)	氧化还 原电位 (mV)	浊度 (NTU)	洗井水性状(颜 色、气体、杂质)	
9:01	5.70	4 51	26.8	5.67	1510	3.24	193	118	淡黄、六、元	
9:11	5.93		27.0	5-70	1402	3.21	185	120	港蒙.长.天	
9:21 594.40 27.1 5.72 1517 3.19 189 (27 选载、大大										
m 2 m										
方法依据: 电导率: D. 水位仪型号	Z/T0064.6 /编号: н	-1993 DO: Y.SWJ-1/XYO	HJ506-	2009 Н	J 1019-2019	其他:		池度:H	J1075-2019	
检测人员:	mz	3100		复	夏核:介入へ	7	审核: ₺	*3	第 页 共 页	

地下水采样前洗井记录表

单位/项目名	7称:揭图	市晟源美	佳环保	有限公司]土壤、地	下水白行品	点测			
地址: 揭阳	市揭东区	玉滘镇东谷	公路尾 欧	: 展电厂东	:侧					
采样井编号	: 1351	60			洗井日期	2025.	7.11			
天气状况:	晴口	B)] [采样井锁			合口		
采样点地面	是否积水	: 是口	台口		采样水 24	小时内是	:否降水:	是口 ?	₩	
洗井资料: 洗井设备/方 井水深度(m): 5-5	性			5 0	井	口到地面	(m); &	.Po .87	
洗井开始时	间: 10:00				洗井结束	时间: /o:	45			
pH 检测型号/绑		电导率标型号/		The second secon	检测仪型 /编号	氧化还) 测仪型	原电位检 号/编号	浊度检	金测仪型号/编号	
SX825/XYC	C-064	DDBJ-350/X	YB-003	SX825/	XYC-064	SX825/X	YC-064	WZB-17	75/XYB-005	
现场检测仪 pH 值校正: 电导率校正 氧化还原电 浊度校正: 洗井过程记	1、pH : 1、标》 位校正 1 1、标准标	性校准液值 、标准缓冲	E: 14(溶液值	ζ μ Ψ5υ	iS/cm mV	2、标准: 2、标准液	液的电导率	容: / φ 原电位点	值: 477 mV	
测量时间	水位 (m)	洗井出 水体积 (L)	水温 (℃)	pH 伯	电导率 (μS/cm)	溶解氧 (mg/L)	氧化还 原电位 (mV)	浊度 (NTU)	洗井水性状(颜 色、气体、杂质)	
10:27	5.37	575	30.2	6-63	1667	1.74	-104	82	凌意、无、无	
(0:33	4.39		30.6	6.62	1673	176	101	85	淡街、无、无	
10:47 3.42 32.8 6.60 1654 1.18 -110 87 凝集.无.无										
10.41 7.40 100 1054 1.18 -110 01 没有、元、元										
方法依据: 电导率: D2 水位仪型号: 各注:	Z/T0064.6	-1993 DO	HJ506-	2009 H	J 1019-2019	其他:		浊度:H	J1075-2019	
检测人员:	m,	3400		复	核:か	17	車核:┣┓-	來3	第)页 共 页	

建井成井洗井记录表

单位/项目名	. 旅. 規間	市島順羊	仕	右阻从言	1十年 抽	下水白行馬	5 SIM			
地址: 揭阳						1 7/5 [11] 11	II DA			
		八合 惧 小个	1.100/100人	成吧」亦						
采样并编号	L. I.				洗井日期:		(2011)			
天气状况:		1000		7	采样井锁			否口		
采样点地面	是否积水	: 是口	否口		采样水 24	小时内是	:否降水:	是口 2		
洗井資料: 洗井设备/方 井水深度(m): 3.89				口高度(m L): 17	并	井深 口到地面	(m): 9 (m): 0.		
洗井开始时	间: 8:05				洗井结束	时间: 8	:38			
pH 检测型号/绑		电导率标型号/			检测仪型 /编号	氧化还原	原电位检 号/编号	浊度核	注测仪型号/编号	
SX825/XYC	2-035	DDBJ-350/X	YB-003	SX825/	XYC-035	SX825/X	YC-035	WZB-17	5/XYB-005	
现场检测仪 pH 值校正: 电导率校正 氧化还原电 浊度校正: 洗井过程记	1、pH : 1、标符 位校正 1 1、标准相	主校准液值 、标准缓冲	I: 4 溶液值	β 430 μ	sS/cm mV		液的电导剂 的氧化还	を: / 矣/ 原电位点		
测量时间	水位 (m)	洗井出 水体积 (L)	水温 (°C)	pH 值	电导率 (μS/cm)	溶解氧 (mg/L)	氧化还 原电位 (mV)	浊度 (NTU)	洗井水性状(颜 色、气体、杂质)	
8:18	1.85	17	26.2	1.68	1320	3.25	194	207	黄元元	
8:18	7-88	17	26.4	1.65	1314	3.22	187	211	黄光社	
8:38	1.90	17	26.9	1-69	1327	3.33	190	215	黄えた	
8.78 1.10 11 201 1701										
方法依据: 电导率: D2 水位仪型号 各注:	Z/T0064.6	-1993 DO	:HJ506-	2009 H	J 1019-2019	其他:		浊度:出	J1075-2019	
检测人员:	12/3-	3/1	(复	核: 分八章	į į	核: 如外	-3	第/页 共/页	

建井成井洗井记录表

单位/项日名	称:揭附	日市晟源美	住环保	有限公司	1土壌、地	下水自行品	[2]				
地址: 揭阳市	市揭东区	玉 滘镇东名	医路尾欧	: 晟电厂东	侧						
采样并编号: BSI					洗井日期: 2023.7.11						
天气状况: 晴口 阴口					采样井锁扣是否完整: 是回 否口						
采样点地面是否积水: 是口 否D					采样水 24	小时内是	否降水:	是口?	Fe		
洗井资料: 洗井设备/方 井水深度(r				立面至井 k体积()		#	3 井深 口到地面	(m); &	8-90 ·87		
洗井开始时间	H: 8:45				洗井结束口	师: 9:	j.				
pH 检测仪 型号/编号		电导率检测仪 型号/编号			检测仪型 /编号	氧化还原电位检 测仪型号/编号		池度检测仪型号/编号			
SX825/XYC-	SX825/XYC-035 DDBJ-350/XYB-003		YB-003	SX825/XYC-035		SX825/XYC-035		WZB-175/XYB-005			
pH 值校正: 电导率校正: 氧化还原电位 浊度校正: 1 洗井过程记:	1、标? 位校正1 l、标准标	住校准液值 、标准缓冲	1: 14	13 µ		2、标准 2、标准液	准缓冲溶 咳的电导 ³ 的氧化还 的浊度值	率: (40) 原电位点	μS/cm		
测量时间	水位 (m)	洗井出 水体积 (L)	水温 (℃)	pH 伯	电导率 (μS/cm)	溶解氧 (mg/L)	氧化还 原电位 (mV)	浊度 (NTU)	洗井水性状(颜 色、气体、杂质)		
8:599:10	3.33	75	30.3	6.62	1701	1.73	-/00	157	送着. モ・も		
9:20	3.36	75	30.5	6.65	1710	1.75	-112	163	淡黄、云 - 石		
9:30	3.18	15	30.0	6.67	106 1716	1.79	-106	167	魔元元		
					12/13						
方法依据: 7 电导率: DZ 水位仪型号/	/T0064.6	-1993 DO	:HJ506-	2009 H	J 1019-2019	其他:		浊度:H	J1075-2019		
检测人员: 介	Mà	3/00/		复	核:分別了	中	核: 夕から	A3	第1页 共 / 页		

建井成井洗井记录表

单位/项目名	公称: 揭阅	市最源美	住环保	有限公司]上壤、地	下水白行』	监测				
地址: 揭阳	市揭东区	玉滘镇东名	路尾欧	晟电厂东	(侧						
采样井编号	: 025				洗井日期: 2023.7、[]						
天气状况: 晴口 阴口					采样并锁扣是否完整: 是☑ 否□						
采样点地面是否积水:是口 否口					采样水 24 小时内是否降水: 是口 否D						
洗井资料: 洗井设备/人 井水深度(r式: 火筝 m): 3.7	省		立面至井 k体积()	口高度(m L): 17); 2. 2.0	井深 口到地面	(m): /.	0Z .60		
洗井开始时	20. 200				洗井结束	时间: /o:	31				
pH 检测仪型号/编号		电导率检测仪 型号/编号		溶解氧检测仪? 号/编号		氧化还原电位检 测仪型号/编号		浊度检测仪型号/编号			
SX825/XYC	SX825/XYC-035		DDBJ-350/XYB-003		XYC-035	SX825/XYC-035		WZB-175/XYB-005			
电导率校正 氧化还原电 浊度校正: 洗井过程记	位校正 1 1、标准标	、标准缓冲	溶液值	430	mV	2、标准 2、标准液 2、标准液	液的电导验 的氧化还 致的浊度值	原电位点	值: 427 mV		
测量时间	水位 (m)	洗井出 水体积 (L)	水温 (℃)	pH 值	电导率 (μS/cm)	溶解氧 (mg/L)	氧化还 原电位 (mV)	浊度 (NTU)	洗井水性状(颜 色、气体、杂质)		
10:11	2.50	۱٦	29.4	5.96	1400	4.22	130	260	黄元元		
10:21	2.32	17	29.5	5.93	1413	4.25	127	263	黄.无无		
10231	2.35	17	29.7	1.92	1409	4.29	122	269	黄、元一元		
方法依据: 电导率: D2 水位仪型号	Z/T0064.6	-1993 DO:	HJ506-	2009 H	J 1019-201	9 其他:		 浊度:H.	J1075-2019		
备注:											
检测人员:	ME	3/1		复	核:各人人	中	核: 炯	来多	第/页 共 页		

附件 6 地下水采样原始记录表

各注

电导率标准校准液: | μ/13 μs/cm 测量值: / μ/2 μs/cm; 保存方式:1.则 HNO:微性类的F1~2:2. Ji HNO;使具有沉达到 1% 3 Ji HNO,pH-C2 4.用BDPO,简单pt 约54,用bD1 2~0.02 4代基值微量法条案 五.加入中僻,至中散体保险度为 1%,6.出504,pH-C2)空盒气压表:(型号/编号:D/MS (//c---)/8 13. 原入 HCI 発 pH<2.14. IL 水棒中加入 5 ml 気量化物溶液(L moüL A4g 形态画像(新眉的piELL 部準体体) 15. 加入器受损膨胀 0.2 gi 1-0.5 gi 1 原大発金属 16. IL 水棒加 INO((+1) 20 m). pH<2 20.加入 HC1 或 Nath 兖 pH 7 21. 岩水中有余烷则 11. 备注:P 为聚乙烯塑料瓶(桶):G为健质玻璃瓶 检测编号:2023-06-009 □单位/回项目名称:揭阳市晟深美佳环保有限公司土壤、地下水自行监测 地址;揭阳市粮车区玉溶镇东径路周欧展电厂东测 天气状沉: 场 宋存方式 6 25 22 22 22 容器及采 样量(mL) 四《水和废水监测分析方法》(第四版) 四共它 P/500 P/1000 P/1000 P/500 P/500 P/500 P/500 气温:28.4℃ Fc. Mn. Al. Na Zn. Cd. Pb 既在床, 胸眼可见物 循酸盐、氮化 总硬度、TDS 松割項目 物、LAS As. Se Hg用于194C1 调等 145.2。加入 0.01 g~0.02 g拉环血酸胺去氽氮(B 汽水中介泵泵则 1.1 水样加入 60 mg 库代硫酸钠 19.加入 10.1 差 向1< (程型号编号: pil /mV/译解氧测量仪: (组号/编号: SX82S/XYC+0+2-2) 电导率仪: (程号/编号: DDBJ-350/XYB-003) 水温计 (编号: XYC-038 / APA) 企业代表: 計口 湯 顧包 感它描述 1 构眼可 见物 12 19 加入 80 吨 硫代硫酸钠 22.(g C ~ 4 C) 遊光聚春 22. 冷冻除春 24. 常温,避光体存 25. 块他:1.1. 水管与4涨 10C1.5 ml 水期:口枯 3 17 坐 ng 记录 (NIO) 逐思进 12) 下水米样 (µs/cm) (mV) (mg/L) Pg: 2.19 00 (亞号/編号: HY.SWJ-I/XYC-043) 包度仪: (型号/编号: WZB-175/XYB-005) 方法依据: OHJ 164-2020 ORP 现场测定 出与操 采样方式: 瞬时采样 1317 pH 🕼 正信 1 1.17 PH 張綾 27.1 表 5 井深: 9.1p m 广东信一枪浏技术股价有限公司记录表式 87:50 金测日期: 2023年7月12日 京 村 同 检测人员:「几~~」 检测点位 水位: 3.9 km 154 S202306009 样品现场处理情况 样品编号

也下水采样记录表

检测编号:2023-06-009 □单位/□项目名称:揭阳市晟源美佳环保有限公司土壤、地下水自行监测。旭址:揭阳市构东区玉滘镇东经路尾欧晟电厂东积 方法依据: SHJ 164-2020 检测日期: 2023 年7月/2日

各注 ns/cm: 7.NaOH.pd>128.1L 水棒中基族10C10ml 9.1L 水秤中海深 IXC12ml 10.NaOH.pH 8~9 1L.JHO 他以寄记起了0.2%《朱棣海达》1L 水棒中加液 HC12ml (原子设光法)12.加 HNO- 包以含能达到 0.2% 18. 加入 HCT 至 pH<2.14. IL 水棒中加入 5ml 気質化物溶液 C mot3. 6Hg 近外偏極 研制的pH21. 維洗体 iS. 加入研究の製作を12.如一の5gl 海土場会鉱 16.1.L 水棒加 INO.Cー13のm, pH<2_17. 备注: P 为聚乙烯塑料瓶(桶), 6 为硬质玻璃瓶 份待 数 天气状况:13% us/cm 测量位: 保存 方式 26 25 22 7 22 9 22) 空盒气压表: (型号/编号: 样量(mL) 容器及采 P/1000 G/1000 G/500 G/500 G/500 G/500 G/500 囚《水和歧水监测分析方法》(第四版) 口其它 /):2、电导率标准校准後:/ **公川: | いまで** 亚矿酸盐、高酸盐、 挥发性酚类 氧化物、副化物 检测项目 六合名 寫乞物 耗知量 氰化物 短河 少なが 本口 丰区 颜色 17 感官描述) 水韻计(繪号: 肉眼可 光物 122 14 18 / mv 図量値: / mv 4、深速皮标准校准液値: / NTU 測量値: / NTU 水期: 口枯 12 12 17 张 14 /测量低: 密规处 SIN 1 /) 电导率仪: (型号/编号: / 3、仅器校准:则前(1、pH标准缓冲溶液值: / 测量值: / 2、pH标准缓冲溶液值; (µs/cm) (mV) (mg/L) DO 电导率 ORP 1 现场测定 采样方式: 路切料 pli 🚯 正作) 独度仪: (型号/编号 LI 数 数 がい 5 ш 仪器型号编号: pH/mV/溶解氧测量仪: (型号/编号; 十深:/ 8:28 光林四回 检测点位 154 3、ORP标准缓冲溶液值: н **水位:** / 水位仪: (型号/编号: \$202306009 样品现场处理情况 样品缩号

用于1900年间第四年2. 加入 6.31 g~6.08 g近年而晚春大东第 19. 春水中午会新见 1. 春季加入 80 mg 黄代新微物 19.加入 10.1 至 山(左) 20.加入 10.1 县 26 至 16.7 12.1 基本中有金额则 1. 水芒

(0.C~4C) 遊光保存 23.冷冻保存 24.常温,遵告保存 25.大佛: 破餐價化同约40. 加值股售完约 8/L, 4 C冷線 26.氦氧化钠至 PI>12

复核: かり 3

企业代表:

检测编号: 2023-06-009 口单位//////// 口項目名称: 揭阳市最源美佳环保有限公司上壤、地下水自行监测 地址: 揭阳市揭泰区玉滘镇东径路尾炊摄也「东赋 四《水利废水盐测分析方法》(第四版) 口其它少时, 口井 四井 四邦 四級 方法依据: OH1164-2020 安华七小、殿叶巫祥 检测日期: 2023年7月12日

所面 本温 pll pll 6 由分華 ORP DO 深建度 年 内面可 瀬 检测项目 存 (CC) 改数 正値 (us/cm) (mV) (ung'L) (NTU) 球 北海 色 化碳 來 甲苯 (如子 测量值)	が古名		共株				现场测定	洪				感官指述	لك		容器及平	保存	你样	33
S202306009 AS O; 18 C C C C A A A A A A	1+ HL-Ma 7	检测点位	回回	治(2)	0.000	pl1 惨 正值	中 (ms/sm)	ORP (mV)		溶性度 (NTU)	14 张	肉眼可 光粉	版印	检测项目	样量(mL)	方式	数	
5、 化器校准、 照前 (1, pH 标准线冲溶液值: / 2、 pH 标准线冲容液值: / 3, 2、 电导索标准线冲溶液值: / 3, 2、 电导索标准线冲流流; / mV 4、 深色度标准线冲流流; / mV 4、 深色度标准线冲流流; / mV 4、 深色度标准线冲流流; / mV 4、 深色度标准线冲流流; / mV 3 是位有 (2) 2、 电导流导 / 3 是位有 (2) 3 是位于 (2)	S202306009	Ası	6:18	\	`	\	\	\	\	1	14	12,	xx 对各二		G/40	17	7	
5. 化器校准: 测前(1,pH 标准级冲塔液位: / 测量值: / 2, pH 标准级冲塔液值: / 3; 2, 电导率标准校准流: / 加 4, 深边变标准线冲塔液值: / 3; 2, 电导率标准校准流: / 加 4, 深边变标准线冲落液值: / 3; 2, 电导率标准校准流: / 加 4, 深边变标准线冲落液值: / NTU 测量值: / NTU 《各注: P 为聚乙烯塑造 次位仪: (型号编号: /) 电导率仪: (型号编号: /) 电导率仪: (型号编号: /) 电导率仪: (型号编号: /) 电导率仪: (型号编号: /) 可能仪: (型号编号 /) 株品现场 Axady: H=128.11 次件可能仪记证如 等11. 次件可能 H22ml 19. Axady pH22ml 20. Axa												8						
5. 仅器校准: 测前 (1、pH 标准级冲溶液值: / 到量值: / 2、pH 标准级冲溶液值: / 测量值: / 3:2、电导率标准校准液: / μs/cn 5. 仅器校准: 测前 (1、pH 标准级冲溶液值: / 如 到量值: / 为: DH 标准级冲溶液值: / NTC														<				
5. 役器校准: 观前 (1. pH 标准缓冲溶液值: / 2、 pH 标准缓冲溶液值: / 2、 pH 标准缓冲溶液值: / 3.2、 电导率标准效准液: / μικαι 2. ORP 标准缓冲溶液值: / mV 4、溶色度标准校准滤值: / NTU 测量值: /); 2、 电导率标准效准液: / μικαι 2. ORP 标准缓冲溶液值: / mV 4、溶色度标准校准滤值: / NTU 测量值: / NTU 多量值: /); 2、 电导率标准效准液: / 以存在场景度: / DUMV溶解氧测量仪: (型号编号: /) 电导率仪: (型号编号: /) 电导率仪: (型号编号: /) 水值(/ / / / / / / / / / / / / / / / / / /																		
5、 仅器校准: 观前 (1, pH 标准缓冲溶液值; / 如星值; / 2、 pH 标准缓冲溶液值; / 》; 2、 由导率标准资准液; / µxicm 8、 Q器校准: 观前 (1, pH 标准缓冲溶液值; / mv 4、溶血度标准核准液值; / 》; 2、 电导率标准资准液; / µxicm 8、 QRB 校准编节 (2 型号编号; / mv 4、溶血度标准线性流流度; / 》) 水温计(编号; / 》) 水温计(编号; / 》) 空盒气压装; (型号编号 次位仪: (型号编号; / 》) 电导率仪: (型号编号; / 》) 电导率仪: (型号编号; / 》) 水温计(编号; / 》) 水温计(编号; / 》) 空盒气压装; (型号编号 水位仪: (型号编号; / 》) 电导率仪: (型号编号; / 》) 电导率仪: (型号编号; / 》) 水温计(编号; / 》) 空盒气压装; (型号编号 水位仪: (型号编号; / 》) 电导率仪: (型号编号; / 》) 电导率仪: (型号编号; / 》) 水温计(编号; / 》) 水温计(编号; / 》) 空盒气压装; (型号编号 水位仪: (型号编号; / 》) 电导率仪: (型号编号; / 》) 电导率仪: (型号编号; / 》) 水温计(编号; / 》) 水温计(编号; / 》) 水温计(编号; / 》) 小温计(图号) 以后(取号) 以后(取号																		
5、仪器校准, 观前 (1, pH 标准缓冲落液值: / 测量值: / 2、pH 标准缓冲溶液值: / 》; 2、电导率标准效准液; / μν/cm																		
5、 化器校准, 测前 (1, pH 标准缓冲溶液值: / 即量值: / 2, pH 标准缓冲溶液值: / 测量值: / 3, 2, 电导棒标准效准液: / μwicn 3, ORP 标准缓冲溶液值: / mV 测量值: / mV 4, 溶泡度标准卷准覆值: / NTU 测量值: / NTU 多量: P为紧乙烯塑料 经营售; pH/mV/溶解氧测量仪: (型与编号: /) 电导格仪: (型与编号: /) 电导格仪: (型与编号: /) 电导格仪: (型与编号: /) 立量气压装: (型与编号														_				
5、仪器校准、测前 (1.pH 标准缓冲溶液值: / 测量值: / 2、pH 标准缓冲溶液值: / 》12、电导率标准效准液; / μs/cm 3、ORP 标准缓冲溶液值: / 》12、电导率标准效准液; / μs/cm 2、ORP 标准缓冲溶液值: / NTU 测量值: / NTU														_				
及落型号編号: pH/mV/溶解氧测量仪: (型号編号: /) 电导率仪: (型号編号: /) 水温() 水温() (編号: /) 空盒气压表: (型号編号 水位仪: (型号編号: /) 水温() (2 号/編号: /) 本度仪: (型号編号 /) か (2 号/編号: /) か (2 号/編号: /) か (2 号/編号: /) か (3 別 HNO)。 pH<2 4.月HPO、 (W () 日 が () 1 が () 1 水停 ()	5、仪器校准: 测53、ORP 标准缓冲	前(1、pH标准缓冲 溶液值: /	h溶液位: mV 测过	/ 测 量值:	晕位:	/ >c	pH 标准 浑浊废标	£缓冲溶 E校准液	F液值:	用家 /	(信: /		中台。	体标准效准液; 备注: P.为	/ us/cm 测量值: 9聚乙烯塑料值(语); 0	劉母侑: (新), (/ 1	ps/cm; 長玻璃瓶
水位仪: (型号)箱号:	仪器型号编号: pH	/mv/溶解氣測量仪	(型号编	Ţ.		十年 (赤仪: (型与编号			小頭 小	(編号:	-) 空盒气压表:	(型号/编号:	-	0	
	水位仪: (型号/编	14) 准度	仪: (4	20年/第号			~										
		保存方式: L加HN	On 整化炉 pH	1~2 2.	JII HNO5	使其含量达	年, 1% 3	M HNO,	pH<2 4	. дин.ро. iğ	Sept St	§4H0.01 §	1~0.02 g.l	6环血酸松去涂源 5.	加入口醛, 使甲醛6	本机器度为	98. 6. H.SC	d oc
	样品现场	7. NaOH, pH>12 8.	11. 水棉中加	Ж HCl 10	ml 9.1.	こ 水枠中部	欲 HClin	1 10, Ns	40H, pH 8-	-9 II. Jan	1 (0)(2)	TLEM 0.2% (医化物记	3.11 水浒中加松 HC	12 ml(展子泉光绘)	012. AL HING	,但几个铅	批判
	外理情况	13.加入 HCl 至 pR	<13.14.11. 水	经中加入	5 ml 344	4.化钠溶液	(] mol/L fit	m kyris i s	成,使作品的	pHCII,避洗	保存 15.	加入案件版	数种产 0.2	ptト-0.5 g/L 除去残ら	內域 16.1L 水样切	II HNO, CI	D 20 ml, pl	H<2
4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	7.51	用 1 19HC1 賽至 pl	1≤2, JEA 0.	01 g~0.	CZ 2 11.16	5世醫除去3	NM 18. 名	水川有金 3	MUHILA	(年加入 80 m	26 個代項	REN: 19, th	A IEI	8 ptl<2 20.加入 P	HCI LÅ NACH IT PH	7.21. 岩水	中有公氣則	1
ALCO OF INCREMENTATION OF CULCAMENT OF THE PROPERTY OF THE STANDARD SECTION OF STANDARD FOR THE STANDARD OF TH		JITA 80 mg WHITE	聚出 22. (01	7-4E) 3	亚光保存。	23. 冷连保4	学 24. 密温,	遊光保存	7.25. 压他:	氧氧化物至	PH>12							

检测编号: 2023-06-009 口单位// 回项目名称: 暑阳市晟源美佳环保有限公司土壤、地下水自行盐测 地址: 揭阳市揭东区玉岩镇东径路尾饮晟电厂东则 区《水和废水监测分析方法》(第四版) 区其它 水期: 口枯 区 中 口平 气温:28 4°C 方法依据: OHJ 164-2020 检测日期: 2023年7月/2日

本田籍中 8202306009		拉鞋				现场测定	田			143	感官描述	121		多學也可	位存	松小	
S202306009	检测点位	三	(30)	pH 读数	pH修业值	旧号棒 (ms,cm)	ORP (mV)	DO (mg/L)	河 (NTC)	₽ ≰	沟眼可 见物	優 句	检测项目	ない 存量(mL)		‡ ¥	各注
חולם	12/2	81:18	\	1	1	\	1	/	/	立	と	NA NA	夏和朱, 此就可见物	P/500	22	1	
	(现4均等组)										2	n——	总硬度、TDS	P/500	22	1	
													硫酸盐、氯化	P/500	22	-	
										-			彻、LAS				
										NA.	8 5 HS		Fe. Mn. Al. Na	P/1000	1	1	
										_			Cu, Zn, Cd, Pb	P/1000	-	-	
										_			Hg	P/500	25	-	
										/		7	As, Se	P/500	6	1	
 以器校准: 劃前(1,pH标准缓冲溶液值; ORP 标准缓冲溶液值; / mV 测量 	(1, pH标准缓) 液值: /	爱冲浴液值: mV 返由	· 通	通四位 /	7 4 7 年	(值: / 测量值: / 2、pH标准缓冲溶液值: 测量值: / mV 4、深速度标准校准液值: /	医缓冲器 交准液值	學液值:	 	第:	✓); 2, NTU	型型	电导率标准校准液: 各注: P.为聚	际准校准液: / ps/cm 测量值: / ps/c 各注: P 为聚乙烯塑料瓶(桶): G 为硬质玻璃瓶	ps/cm 测量值; B科瓶(桶); 6 关	1個质数3	ps/cm: 高瓶
父路型号编号: hH /mV/溶解氧氮量仪:《梨号/编号/编号/水仪仪: 《錾号/编号: HY.SWJ-I/XYC-043 》	IV/溶解氧测量仪: : HY.SWJ-I/XYC		引: SX82 违反仪:	S/XYC3 (型号	10日の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本の日本	968 : SX82S/XYC 956	(型号/编 XYB-00	号: DDB S)		3-003) zk	循計(第 ⁴	F: XYC) 空食气压表: (型与编号: DYM2HXC-0 8	以6.号影/	NAK (C-	00
	保存方式: 1.加HNO	O, 酸化炔pH	.5 2-1	JI HNO,	化共含果建	M 1% 3.	JI HNO),	pH<2 4	. 利用.PO. 证	松屋 田道	4. /II 0.01 gr	~0.02 男 护	酸化学 pH 1~2 2. JJ HNO; 使其舍害法则 1% 3 JJ HNO; pH<2 4. JHHPO; 诉讼 pH<2 4. JHHPO; 诉讼 pH<2 4. JHHPO; 收入 2. JHHPO; 使用格格积浓度为 1% 6. HSO, pH<2	知入中醛,使中醛	体积冰度为	1% 6.H ₂ St	λHq «C
林品叫场,	7. NaOH, pH>12 8.	11. 水谷中郊	第 HCI 105	mi 9.1 L	水樗牛加	液 IICl 2m	10. Na	OH, pH 8~	-9 II. MHC	1 使压缩	达到 0.2%(氢化物法	2.NaOH.pH>12.8.1.L 水科中部张 HC110mi - 9.1.L 水管中加浓 HC12mi - 16.NaOH.pH 8~9 - 11.加HC1 舰块合形达到 0.2%(SAK物法)1.L 水料切除 HC12mic属子设施法)2.加 HNO,包具含用达到 0.2%	12 ml L原子安光宏	312. JH HN(1. 党共會出	达到 0.2
九 1 1 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	13. 加入 HC! 至 pH	<214.11. 水	吞中加入	5 ml %氣	化粉溶液	(I mol/L fit	加州30 50	後 使精制的	pH211, 磁光	%作 15. ,	和人称代明	称至 0.2%	13. 据入 HCI 至 pH<2.14. 11. 水亭中加入 5 ml 気気化粉溶液 CL mod.L //Hg 影為血酸 (對胃的 pH21),通光体存。15. JT入臺灣商務經濟 0.2 gL0.5 gL 像表現会鏡。15. 1 L 水样加 HNO, CH 1) 20 ml, pH<2 - 15.	5氪 15.1L 水料	FI HNOS CE	-1.) 20 ml. pl	H<2 17
	III - 10HC1 観答 PA 加入 80 mg 包化链	14.28. 加入 0. 繁物 23. caで	01 gr-0.	02 g EGEN TREAS	血酸酶 去多3. 等落保着3. 等落保着	2. 18. 加 下 24. 指罪	大中有余益 基的效益	A.明 1.1. 表 7.25. 花便:	存留人 80m	s 配代配	版社 15.4mm	入記し	用 1 10961 賈善 西冬2。近入 0.01 g~20 g 是场相隔隔差交通 18 岩水牛有金属则 1.1 水拌加入 80 g 强火强散物 15 加入 501 境 西<2 — 30 加入 101 或 2641 至 由721,岩水牛有金属则 1.1 水拌加入 80 g 海孔腹膜 23,ctc~4亿1 斑光麻布 28 溶液保存 24 溶泄,游光疾存 25 清绝;1.1水移中间淡 10.13 ml	IC! 蚁 Natill 至 pi	47.21. 25)	(中有会報)]]	1.1.1
检测人员。	海瀬人员:「Parl 3012 対核: 5013 甲核:1、42	The Mark			复核:	复核: 52/3	m	进	甲板:一十八十八	M		企业代表:	\	秋	第/页 共	共久页	

检测编号:2023-06-009 口单位//已项目名称:揭阳市最源美佳环保有限公司土壤、地下水自行监测 地址:揭阳市揭东区下滘镇东径路尾欧战电厂东题 天气状况: 建 区《水和废水监测分析方法》(第四版) 口其它 水期: 口枯 区 中 口平 (編: / C 检测日期: 2023 年7月12日 - 方法依据: 区田1164-2020 水位: /m 井深: / m 米样方式: 3**4313** 4³

		排				現场测定	迅			-7-	感官描述	<i>(</i> 2)		公路田市		特切	
样品编号	检测点位	大 宮	煮 (5)	pH 读数	pH 像 田田	由导率 ORP (us/cm) (mV)	ORP (mV)	DO (mg/L)	新選斯 (NTU)	17 张	沟眼可 见物	隆司	型	许显(mL)	不大	2 数	各注
S202306009	756	87:6	/	\	1	1	\	/	\	(4)	43	浴	挥发性酚类	G/1000	25	-	
	(mth 45)											145	六价倍	G/500	22		
												SAM S	强名参	G/500	14	1	
													耗氣量	G/500	22	-	
													氧化物	G/500	26	-	
													類類	G/500	9	-	
													至"荷酸盐、硝酸盐、	P/1000	22	-	
													观化物、映化物				
3、	1标准	沒有容效值: mv 選	\ <u>₩</u>	测量值: / mV	7 7 7 年 4 年	/ 2、pH标准缓冲溶液值, 4、浑速度标准校准液值; /	帝级冲滑 校准液量	5%位;	直: / 測量値: /) / NTU 測量位: / NIU	· · · · · · · · · · · · · · · · · · ·); 2, NTU		电导率标准校准液: 各注:P为聚	标准校准统: / µs/cm 测量值: / µs/c 备注: P 为聚乙烯塑料瓶 (程): 6 为硬质玻璃瓶	测量值: 桶): 6 7	/ µs/cm:	Sn. Wi
仪器型号编号; pH/m	仪器型号编号: pH/mV/溶解氧测量仪:	~	型号编号: / / / / / / / / / / / / / / / / / / /	/ E	(L) 电导率仪: (類号/编号:	(40年)	是。"	_)大道) 水温计 (编号:		/) 空盒气压表: (氧号/编号:	五表: (亞号/鑛	· 6.	1	
小型区: (至于)3	17: 保存五式: 1.加HNO:		74.32.1X	M HNO:	(別)	5到 1% 3	AT HNO.	/ pH<2.2 9	. DHsPO.	ME PH NA	14, 10.001	~0.02 g 4	- / PLINIK: / 宝子/約17号 個化作用1-2 2.加 H.NO: 使具等最达到 1% 3.加 H.NO: pH<2 4. DH:PO: 開発的 約34. D0.01g~0.02g 統体直服除去会流 5.加入中化: 使中発体保液度为 1%。6.形SO: pH<2	加入甲醛。使甲醛	体积液度为	1% 6.H;S	ō
样品现场	7. NaOH, pH>12.8.	11. 水棒型加入15.2.14. 用水	終 HCI 10	ml 9.11	馬上华爷、	※ HCl2m	II IO. No.	OH, pH 3~	-9 11. 知用o	1 (2012)	(5/29) 0.2% (Im A. 前分子前2	氧化物法的种子 0.2	2.NaOH.pH>128.1.L 水槽中脂类 HC1 pm 1-8.1.L 水棒中加浆 HC2 m 1-13.NaOH.pH 8->> 11.加HC 发现存储设施 0.2%(强化效能) 1.L 水槽中加浆 HC1 zm k 原子或光线 2.L 加 HNOF 使从全角线的 9.2%(1.1.1 x 种中加浆 HC1 zm k 医水液中加炎 3-m 发光冷静深速(1 mod.t. All s 超过的数 格特斯语 m D 1.1 非常学习 13. m A A A A A A A A A A A A A A A A A A	ZmlC原子英浩独 	M HNO: CI	3. 使其余位 1.20ml.a	N H
处理情况	月 1+10HCT 関充 M 加入 80 mg 所代配配	352,加入 C 被第 22, cor	3-4C)	02 g 抗坏 产产保存 2	加度除力/ 3. 冷冽保/	1 B. 2 B.	水中有余法 更光保存	(A) 1 1. 水 25. 基值:	 	m 液化硫 1约 40. 3	製(4 19.加 高(報)和特別	12 HCI 3	月 F100CT 對於 24×2。加入 0.01 s=-0.02 z 最先而複数亦亦義。18 方水平有金属用:1 水形加入 25 m 被代徵数件(19 加入 16 m 所 24×2 = 20 加入 16 m 或如印 在 加工 21,若水中有金属则(1 水形) 加入 80 m 所代指指的 28。(900—400) 第9位4年 28 冷淡的,现在指,是无格子 35 是他,我像像先加到 46。加廉数据不约。4 4个答案(26 24年194年194年197)	SI JA NAOH 企 pill FPH > D	17.21. 岩秀	中有金额原	-
检测人	检测人员: 与2013	to the			复核	复校: 734 3	3	1	干核:	->	2 企业代表: /	L代表:	\	1000	新城 共3页	河	

检测编号: 2023-06-009 口单位//口项目名称: 揭阳市晟源美佳环保有限公司土壤、地下水自行监测 地址: 揭阳市揭东区玉滘镇东径路尾欧晟电厂东侧 区《水和废水监测分析方法》(第四版) 口其它水別: 口柱 囚牛 口平 (温: / で) 检测日期: 2023年7月12日 方法依据: SH1164-2020

19 19 24	公里 原父	米米				机场测定	祖				殿山猫冰		2. 原原工	容器及采		42	份样
大	位割 点化	財用	100円	PHI 数据	PH 像 上值	电分率 (hs/cm)	ORP (mV)	DO (mg/L)	級軍辦 (NIU)	工, 来	ぬ服可 见物	製 卸	位测划日	样量(mL)	方式	米系	43
S202306009	15/	87:6	1	/	1	\	1	1	/	14)	15	淡寒	三氮甲烷、四氮	G/40	17	8.30	2
	CN24953)											_	化碳、苯、甲苯				
													\				
													/				
													(
5、仪器校准: 测消	5、仪器绞淮; 测前 (1, pH 标准缓冲落液值; / 测量值;	中溶液值:		量位:	- δί 	2、pH标准缓冲溶液值,	· · · · · · · · · · · · · · · · · · ·	液值	/ 泡垂匠:	一.); 2,	中山	自导率标准校准廃,	/ µs/cm 测量值:	测量值:	100	-
3、ORP 标准缓冲溶液值:	溶液值: /	mV 测	测量值:	/	mV 4,	4、浑浊废标准校准液值;	住校准務	但: /	NTU 测量值:	是位:	DEN /		备注:P头	各注:P 为聚乙烯塑料瓶(桶);G 为硬质玻璃瓶	(順)	14.5	臣
仪器型号编号: pH	父器型号编号: pH/mV/溶解氧测量仪: (型号/编号:	(祖号) (1)	η. 	~	-	电导率仪: (型号/编号:	祖母/總元	rin)水涌计(缩号;	(影)	~) 空盒气压汞: (型号/编号:	(型号编号:			
水位仪: (型号/编号:	· 4.) 池度仪: (型号/编号	(X: C	型号/编号	-		_										
	保存方式: 1. 加 HA 7 Na OH , NH > 12.8	(0) 吸化使用	11~2 3. WHC110	LI HINOS	使其合称。	左到 1% 3 数 HCl 2 m	ALL HNOS	PH<2 a	MHSPO, M	EpH 20	44, M0.01	第~0.02 g	保存方法,上面HNO,数化的 FH1~2 多语 HNO,在某个误法的 1% 多语 HNO,更不2 4 用HPO,更常的 "这是4 用901"。2021年次系重数第五金属 5 加入中部,每中额在支援设为 1% 6 HSO。 \$11<2 T NOOH - HLNO 2	加入中聚,由中聚分 3mm(下)2gg+3g)	本公孫改法 12 年 HN	35	H 41
本 品 知 知	13.加入 HCl 至 pt	4<2.14.11. 水	とヨール	Sml %	LIKEREN	Cl mold. 8	18 松明	表 使托品的	pHP11, MD3c	保存 15.	当人別の記	WDM5: 0.2	13. 加入 HCL 至 pH < 2 14. 11. 水芒中加入 5 ml 氧氧化物溶液 C m abit 3 hg 表达面数 数指面的 PD 11. 避免保存。15. 加入部份资源程度 0.2 gL 少少3 gL 海之线会流,16. 11. 水杉加 HN (C - 1). 30 ml. pH < 2. 17.	(編 18.11. 水柱)	II HNO, CI	12.20	É
外型用机	THE LY LONGE PARTY IN	H≤2, 加入 c	.01 g0.	02 8 元年	主義除去	M 18. #	水中省会算	EM 11.2	FEMILY SO I	医 硫代硫	MEN 19. J	IN HCL	用于17的时间 预至 向152,加入 0.31 g0.02 g:近年/腹幕大余道 -18. 春水中省会范围 -1. 水港加入 8m mg 過代閱股幣 -19.加入 16.1 至 内<2 - 20.加入 16.1 或 2a0计 每 经 7 21. 岩水中省会镇则 -1.1 水塔	ICT AR NaOH 46 25	721. 23	件值	175
	- 14 × 25 間 (銀色電影型 27 - 17) 12 小型電子 27 多数電子 27 (銀箔) 28 小型電子 27 (銀箔) 27 (銀箔) 27 (銀箔) 27 (銀箔) 27 (金属 27 (34 (34 (34 (34 (34 (34 (34 (34 (34 (34	WEST 99 CET	1 JEAN	27 10 10 172	11/14/16 DE	112 de 16 6	25 14.02 14	5 95 11.4th.	52 52 / 12 54b 25	***							

下水采样记录表 型

检测编号: 2023-06-009 口单位/回项目名称: 暑和市晟源美佳环保有限公司土壤、地下水自行监测 地址: 揭阳市揭永区玉滘镇冻径路尾欧晟电厂东侧

囚《水和废水监测分析方法》(第四版) 囚其它 气温:27./℃ 水期:口枯 区下 口平 方法依据: OHJ 164-2020 非深:89m 采样方式: 瞬时采样 检测日期: 2023 年7月72日 水位子中田

天气状况:安

		拉特				现场测定	出			-4.4	感官描述	4 61		必異及 配力	NH 75	小林	
样品编号	检题点位	では、	景 (S	pll 读数	加修工值	(ms/cm)	ORP (mV)	DO (mg/L)	新選送 (NIU)	17 15	构眼 可 光物	製色	检测项目	产品(ML)	ンボ	* **	拳法
S202306009	158	10:47	\$0.8	30.8 640	9.9	6.6 16rg 410		1.78	5	643	15	THE THE	英和本、包括万里籍	P/500	22	-	
		37.2										١	总硬度、TDS	P/500	22	-	
		lvely											硫酸盐、氧化	P/500	22	-	
)	彻、LAS				
												17	Fe, Mn, Al, Na	P/1000	1	1	
													Cu. Zn. Cd. Ph	P/1000	1	-	
													Hg	P/500	25	-	
								21					As. Se	P/500	6	-	
仪器校准: 测! ORP 标准缓冲	1、 仪器校准・測鎖(1、pH 标准缓冲溶液值: 6、g 図風値: 6、g 2、 pH 标准缓冲溶液值: 4、y 3: 2、3、ORP 标准缓冲溶液值: 4、b)mv 测量値: 43 mv 4、溶池度标准校准液近;420 NJC 測量値pos NJU	并将被伍: mV 選生	6名 通	東位:	6.88 2	,pH 标	在級斗引 校准液位	容液値:4	母屋 ろころ	± 6, €	f); 2 NTU		电导率标准按准淡:14/5 μs/cm 测量值: [41/5 μs/cm; 备注: P 为聚乙烯塑料瓶 (桶), 5 为侧质玻璃瓶	际准狡准淡: 445 ms/cm 测量值: 1465 ms/c 备注: P 为聚乙烯塑料瓶 (析); 6 为60页玻璃瓶	测量位; 桶); 6.7	「たん」	us/cm:
常型号编号:pH. 近後: (型号/编	次器型号编号: pH/mV/溶解範測量校: (型号/編号: SX825/XYC- <mark>555/5</mark>) 电号率仪: (型号/编号: DDBJ-350/XYB-003) 水韻计 (編号: XYC-038/水位仪: (弾号/編号: HY-SWJ-1/XYC-043) - 迅度仪: (型号/編号: WZB-175/XYB-005)	: (歴号/編 C-043)	号: SX8; 独度役	25/XYC+	がなり	J导学仪: WZB-17:	(型号/编 5/XYB-0(49: DDB	J-350/ XYE	3-003) 7	県) 土明	F. XYC)空命气压表: (型号/編号:D/M3/X/C-ン/8)	编号:D》	N3/KYC	8/0-
	保存方式: L.加 IIN	10、催化性的	11~2 2	JI IINO	使其含指	左到 1% 3	JII IINO.	pH<2 4	FI 104.II.II.	FpH 80%	4, Muci g	~0.02 g J	公存方式。1.为 INO、简化使和11~2 2.加 INO、优美含质达到 1% 3.加 INO。pH<2 4.用 BPO 记译中 约94.用 BO g~002 g近沟直接等上会通 5.加入甲醛,使甲醛体积度为 1% 6.118O。pH<2	加入甲醛, 使甲醛	体积税成为	1% 6, II.SC	2, pH<2
	7 Nacht at State ta With the Hand of Hand the With the House the With the Hand the State the With the Hand the State the Hand the State the Hand the State the Hand the State the Hand the With the Hand the State the Hand the Hand the State the Hand	11 skikutu	Strong	1 6 1	T SPANCE I	NU TICIDE	N UI II	- Oll - Ho-	-a 11 hrus-	Ability-	A The or lighter	C.F. C.F. SA C. S.	VIII AMMERICAN	The mitter of the distance	AND IN SEC.	A THE PERSON	The American

13. 加入 BC1 至 pH<2 14. 11. 本棒中加入 5 ml 気気色的溶液 (1 molt. 4)4度 抗体血物 優等語等的目に選集策争 15. 加入高低低級機能で0.2 g/1ー0.5 g/1 除去线金属 16. 11. 水棒加 INO; (1-1) 3 ml, pH<2 15. /月 叶印时日间连 时冬2、加入 G.C.I g--G.C.G g-拉怀加黎泰太余第二8. 春水中有余紫则 1.C.本产加入 80 mg 研代硫受物 19.加入 HG 完 加入2 20.加入 HG 或 5mg 至 加工21,参水中存金规则 1.L. 次件 样品现场处理情况

加入 80 mg 强代硫酸钠 22、(0℃~4℃) 避治软存 23.冷离杂存 24.常温,超光保存 35. 异他: 11. 水洋中调浆 HC15 ml **检置人员:∫0**₹

中核: 复核: 92/3

巡岸

企业代表:

检测编号:2023-06-009 口单位/四项目名称:揭阳市晟添美佳环保存限公司上煤、地下水自行监测 地址:揭阳市遏态区玉滘镇东径路居败最电厂东侧 四《水和废水临测分析方法》(第四版) 口其它 检测口期: 2023年7月12日 方法依据: INT 164-2020

		14 000 班				too to	1					1			Ser	K.	
		拉供				现场测定	定				感官描述	*		灾 程	但在	井か	
样品编号	检测点位	は国	₩ (2)	田談	pH 慘 正值	化 (ms/cm)	ORP (mV)	DO (mg/L)	型型法 (NIU)	17 长	内眼可 见物	版句	检测项目	甘豐≪木 样量(mL)		Z 数	各
S202306009	158	10:47	1	1	/	/	1	1	/	57	といる数	茅	挥发性酚类	G/1000	25	-	
												16	六价格	G/500	22	-	
												いた。	寢名多	G/500	14	-	
													耗氣量	G/500	22	-	
													無名診	G/500	26	1	
													氨氮	G/500	9	-	
										_			豆组酸盐、硫酸盐、	P/1000	22	-	
													領化物、側化物				
3、仪器校准: 测前(1、pH标准缓冲溶液值: 3、ORP标准缓冲溶液值:mV 测量	①(1, pH 标准缓 溶液值;	和溶液值: mV 週	7	/ 测量值 :: t: / mv	1 4	2、pII 标准缓冲溶液值; 泽浊度标准校准液值; /	希德 法 法 法		/ 刻量值: / NTU NTU 测量值: / NTU	1 三三	/):2, /MTU		电导率标准校准液: 各注: P 为聚	际准校准液: us/cm 测量值: us/c 备注: P 为聚乙烯壁料瓶(桶): 6 为更质玻璃瓶	hs/cm 测量值; 料瓶(桶); 6 为	り取る機能	tra/sm:
父器型号编号: pl1/mV/溶解氧测量仪: (型号/编号:	/mv/溶解氧测量仪	((提号)()	- 1	\	^ t) 电导率仪: (型号/编号:	副 /			大) 水通川 (氣号:	,)空倉气) 空倉气压表: (型号/编号:	÷.	\	^
小山水: (果豆輔与:	(1): 存在方法, 1 加 IIIN	JO. 8847-6Fin	### TX	高UATX: (生力/差力)	7. 雑つ	24 lift 2	ONIT IN	11157	Her.Po. ill	Wan Milk	d. Iloni	a 200 97 a	1 - 20以下(生命があった) 発表も表し、1 p.11NO・解釈を p.11-2 9 p.11NO・作を提送される 1 p.11NO・ p.152 4 p.12NO・ p.24 p.1	THE COLUMN THE PERSON	4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	10. 6.11.07	- C
经口证42	7. NaOII. p11 > 12 8.	.11. 水件中加	IX IICI I) ml 9.1	こ水ギ中加	i族 IICI Zu	al 10.N	20H, pH 8~	-9 11. JIFIC	1 (1)	USEN 0.2%	(氧化物法)	7. NAOH. pil > 12.8.11. 水样中加浓 ICT10 ml - 5.1 L. 水样中加浓 ICT2 ml - 10. NAOH, pil 8~9 - 11. 以时C 数据各位达到 0.2%(沒在數法) 1 L. 水样中加浓 ICT2 ml (原子安光宗) 12. 加 INO) 使某个情况到 0.2%	12 回(原子炭光彩))12. M HN	2. 使其合配	5.0 n.2%
作品完多休用特拉	13.加入 HCl 至 pl	H<214.1L A	KAF (L)DA	5回3	瓦化的洛波	(I mol/L A	The Bibli	成, 包料品的	pHEU, 鐵光	保存 15.	加入域代别	级轮 11.2	13.加入 HCl 至 pH<2.14.1L 水棒中加入 5ml 気氧化物溶液(Lmo/L.44g 定为m8, 2程指的pH2L) 遗类核存。15.加入最低的微密在 1.2 g/10.5 g/L 除去残余氮。16.1 L 水样加 HNO-(1+1) 20 ml pH<2_11.	★ 16.1L 水併	II HNO; T	HD 20 ml. pl	I<2 II.
大井田が	用 1+10461 调单 时冬8. 加入 0.01 8~0.02 6 陆场血酸除去灸属 18 岩水中有余氯则 1.1 水拌加入 80 mg 强代硫酸钠 19.加入 18.1 至 时<2	M ≤ 2, M ∧ (0, 01 g~-3	.02 E Hilb	正確談子	亲属 18. 岩	水中有余	紀列11水	計 加入 80 m	g 現代職	被拊 19.7	131 KI	E pH<2 20.0Ⅱ入 H	20. 加入 HCL 或 NeOH 年 pH 7 21. 岩水中有金属加 1 L 水样	17.21. 岩丸	C中有企業別	11. 水群
	加入 80 mg 硫代硫	(所) 100 (10)	(1,4-1)	那条是在	判拠 处 8%	存 24 常計	. 那光程	7 25 比例.	62 69 36 4 An	1 80 40, 3	1年前衛星至	Stort. 47	国人 80 m 都代籍原表 20.(fr.→47) 建铁汽车 20. 冷冻压水 24. 统治,避免决定 25. 决治,跟部等处国产品,而由你出来的"14.17分级。20. 公司少加米 bit > 17	e bu > 13			

郑贞 共気

XYT-JS-XC-0032

地下水采样记录表

检测编号: 2023-06-009 口单位/应项目名称: 揭阳市晟端美伟环役有限公司土壤、地下水自行监测 地址: 祝愿市被东区玉帮镇东径路尾欧晨电厂东测 四《水和废水监测分析方法》(第四版) 口其它 水期: 口枯 凶中 口平 气温: / で 检测日期: 2023年7月/2日 方法依据: GHJ 164-2020 水位:/m 井深:/m 采样方式:瞬时采样

		拉陸				机场测定	川			_,	感言描述	()		公器足法	保在	公本	
样品编号	检测点位	国	(20)	PH 读数	pH 惨	日母将 (hs/cm)	ORP (mV)	DO (mg/L)	不包度 (NTU)	17. 录	肉眼可 见物	版甸	检测项目	样量(mL)	方式	凝	茶
S202306009	158	10:4)	1	/	/	1	/	\	\	14	12	沒	氣甲烷、四氯	G/40	17	2	
		-											化炭,苯、甲苯				
													1				
													\				
													_				
5、仪器校准: 测前(1, pH 3、ORP 标准缓冲溶液值:	5、仅器校准: 测前(1、pH标准缓冲溶液值; / 测量值3、0RP标准缓冲溶液值; / mV 测量值; /	F溶液值: mV 週	(; / 灣)	**	~ >	2、pH 标准缓冲溶液值; 4、浑浊度标准核准液值; /	重缓冲流	(液位: /	/ 宮畑庙: NTU 遠東岳:		/):2, / NTU	(申号)): 2、电导率标准校准液: NTU 各注: P 头	校准液: / ns/cm 测量值: / ns/cm 名注: P 为聚乙烯塑料糖 (稀): 6 为便随玻璃瓶	hs/cm 刻垂值: 路望科瓶(桶);(/ / 3 为硬质3	us/cm: 玻璃瓶
仪器模号编号: pi	父器型号编号: pH/mV/溶解氧测量仪:	: (型号/编号:	(E) 年 年) 电导率仪: (型号/编号;	乗る事	1022) 水韻井 (鑑号:	(報告:) 空命气压表: (型号/编号:	(型号/编号:	,	^	
水位仪:(型号/编号:	·) 知6	泊度仪: (型号/编号	型号编号	` .		_										
	等存法法: 1. 如HNOs	0, 酸化使即	H1~2 2.	All HNO;	使其合品	소케 1% 3	A HNOs	, pH<2 4	. ilhipo. %	(4) III \$9	94. A0.013	g~0.02 g	酸化使pH1~2 2.JnHNO; 使基合形达到 1% 3.JnHNO; pH<2 4.JlhnO; 财存pH 约约4. 用0.Jng~0.02g近坏血酸除去分氮 5.加入甲醛; 使甲醛体影液度为 1% 6.HSO4. pH<2	加入四陸, 使年醛	休和常度为	1% 6. H ₂ Si	O4- PH
样品现场	7. NaOII, pH > 12.8.	11. 水芹中焦	BK BCI 10	1 al 3. 1	1. 水样中加	i% παιΣα	N 10. N	aOH, pH 8-	-9 11.JIHC	1 側部	(CEB) 0.2%	(氧化物法	3.NaOl. pil>12.8.1.L 水样中加浓 HC1 cml 3.1.L 水样中加浓 HC1 2ml - 16.NaOll, pil 8-911.JanC1 焦戊含化医到 0.2%(经伦散法) 1.L 水洋中加浓 HC1 2ml 联子荧光效 3.2.J. HNOA 误误含量法到 0.2%	12 ml(原子荧光檢	012.JI HN	A 仮以合型	光到 0.2
外別告別	13. 加入 HCI 至 pH	K214.11.2	くまー書と	5 ml %4	公化的路板	C mol/L fi	4g MAIL	题 位指品的	pHSII 景沙	保存 15.	加入氧化物	1296 St. 0.2	13.加入 HCI 至 pH<2.14.11 文件中加入 5 ml 気気化的溶液(I moto. flag. iby直接、気保部り中ELL 速気体下 15.加入端代码跨线:0.2g10.5g7. 築と残会鉱(16.11)水料加 HNO.(コモ) 20 ml. pH<2. 17.	>類 16.11 水样。	ALL HNO, CH	41)20 ml. p	H<2 1
745	用 1+10HCl 別至 pi	1≤2,加入1	9, D1 g~d.	02.8 航路	血酸路去氢	於新 18 岩	水中有余	無別 11.2	CHUIA 80 p	18 优代航	股附 19. 九	IX ICI	用 FFIONE] 谢至 时冬2。加入 D. D. g~6. 02 g. 选为重整等表金统 18. 差水中有金属则 1.1. 太棒加入 80 ms. 常代策裁附 19. 加入 HC1 至 pL<2. 30.加入 HC1 或 NeDH 重 由子21. 召水中有金属则 1.1. 水棒	ICL 或 NeOH 至 pl	H 7 21. 634	中有余氣則	111.4
	The state of the s	man library			CONTRACTOR OF THE CONTRACTOR												

加入 80 ng 硫代硫酸铅 22. (UC ~4C) 避光保存 23.冷冻保存 24.俗温,避光保存 25.块他: 氨氧化铂至 PH> 極調人员: Can y 处理情况

复核: かりつ

企业代表:

勒页 共気

下水采样记录表 型

检测编号:2023-06-009 二单位/四项目名称:构阳市晟源美佳环保有限公司土壤、地下水自行监测 地址: 褐四市漫态区玉滘镇东径路尾数最地厂东则

13. 加入 HCT 至 pH<2.14. LL 水枠中加入 5 ml 気気化溶溶液 (1 md/L A 4 μ 辺が高機 使指指がpH=1). 建光線体 15. 加入機構造験特後 0.2 ml - m - s gl. 地土改会業 16.1 L 水枠加 HNO・(1-1). 20 ml. pH<2 17. 用:110时:阿第 月/5.2。加入 6.01 g~0.02 a 海洋血酸等去余氯 18. 若水中有含氮现 1.1. 茶养加入 80 mg 耐铁碳酸钠 19.加入 HC1 序 由/5.2。20.加入 HC1 或 NaGH 著 经 7.2.1。岩水中有金属则 1.1.水样 各注 7.NoOH.pH>128.1L 水样中加涨 HCl 10 m | 9.1 L 水样中加涨 HCl 2 m | 10.NoOH.pH8-9 | 11.加HCl 使以溶散达到 0.2%(液化透放) 11.水样中加涨 HCl 2 m (原子交送实力2.加 HNO) 使以含化达到 0.2% 另存方式,1.0 HNO。 聚化类的11~2。2.如 HNO。 医基介管达到 7%。3.加 HNO。 pH<2.4 JHHPO,评价时 约54。HRO由 15~10.2 g 3.加 ml m 操中解释的规度为 1%。 8.11.80。 pH<2. 备注: P 为聚乙烯塑料瓶 (權); 6 为便员玻璃瓶 谷 | | | | | | 天气状况: 14 保存 方式 6 25 22 22 22 容器及采 样量(mL) 区《水和废水监测分析方法》(第四版) 区其它 P/500 P/1000 P/1000 P/500 P/500 P/500 P/500 气温:30.5℃ Fc. Mn. Al. Na Cu. Zn. Cd. Pb 硫酸盐、氯化 明和於, 知限可见為 总硬度、IDS 检测项目 物、LAS As. Se Hg 「水路」 計口 753 溪 色 感白描述 水期:口档 囚事 內服可 见物 14 NTC ** 下 味 NIC 鲨细斑: 加入 80 ng 硫化硫酸钠 22. (0℃-4℃) 避光保存 23.冷冻保存 24.常温,遂浩突存 25.共他: 11. 水桶中加浓 赵烈灶 正信 | (μs/cm) | (mV) | (mg/L) | (NTU) 501 00 4.17 独度仪: (型号/编号: WZB-175/XYB-005) 3、ORP 标准缓冲淬液值: 4 }o mV 测量值: 4 s mV 4、浑浊度标准核准液值; 方法依据: INI 164-2020 电导率 ORP 1432 135 现场测定 并深:6-2 四 采样方式:瞬时采样 PH 🕸 9.0 78.1 J.05 11:43 检测日期: 2023年7月/2日 米茶四百 水位仪: (型号/编号: HY.SWJ-1/XYC-043) 检测点位 水位: 2.79 m 1739 S202306009 样品现场处理情况 样品编号

容置人点: (とんり)

加林与企业代表:

备注

下水采样记录表

检测编号:2023-06-009 C单位//回项目名称:揭阳市晟漂美佳环保存聚公司土壤、埌下水自存监测 地址:揭到市揭东区玉滘镇东径路尾放聂电厂东侧

ins/cm: 7.NaOli-pil>12 8.1L 水棒中加张 HC110 ml 3-11-水棒中加张 HC12 ml 13.NaOli-pil8~9 11.加lCl 线域流送到 0.2%(规定数法)11.水棒中加张 11C12 ml(原子或法法)2.加l 11NO_l 使其合形体到 0.2% 13. 加入 BCT 至 pH<2.14. 11. 次件中加入 5.ml 氢氧化钠溶液(1 molt. Arg. 损坏过滤 蚀陷加的中凹1. 是类聚体 15.加入崩代硫酸钠 6.0.2 ph < 0.5 pL 微光聚余源 16.11. 水样加 HNO;(1+1)20 mL, pH<2-1.1. 保存方法,L.其HNO. 限化度时1-2 2.加HNO。使其合语达到 1%。3.加 HNOs. pH<2. 4.是M2Op 阿哈耳。约94.加如1g=5028的写序的理论会就 6.加入中枢,使中常来积极过多 1%。6.出SOL pH<2 备注: P 为聚乙烯塑料瓶(桶), 6 为硬质玻璃瓶 仓 数 天气状况: 56 / ns/cm 测理值: 25 4 22 26 9 22 22) 空盆气压表: (型号/编号: 样量(mL) 容器及采 G/1000 P/1000 G/500 G/500 G/500 G/500 G/500 四《水和废水监测分析方法》(第四版) 口其它 (道: / C); 2、电导率标准校准液; 更有酸盐, 明酸盐, 挥发性酚类 氧化物、现代物 检测项目 硫化物 耗氣量 氧化物 六分格 氨氮 1 NEW YEAR 12 **京** 水期: 口格 四丰 口平 瀬 句 感官描述) 水温计(缩号: 內服可 见物 12 3、ORP 标准缓冲溶液值: / mv 测量值: / mv 4、浑浊度够准数准液值: / NTU 测量值: / NTU 193 ↓* '\ 24. 191 3、仪器校准; 测前 (1、pH 标准级冲容液值; // 测量值; // 2、 pH 标准缓冲探液值; // 测量值; / 批型批 (DIA) 仪器基号编号: pli/mV/溶解氧测量仪: (型号编号:) 电导率仪: (模号/编号: / pH 修 电导率 ORP DO pil pil修 电导率 ORP DO 读数 lif值 (μs/cm) (mV) (mg/L) 方法依据: UHJ 164-2020 现场测定 井深: / m 尽样方式: 64464 /) 泡度仪:(型号/编号 3 (C) V 11:43 米 西 西 三 检测日期: 2023年7月12日 检测点位 725 H / 水位仪; (型号/编号; 水位: S202306909 样品现场 样品编号 处理情况

月 14 GBC 開発 四系2。因入 0. 01 g~2. 02 g 6 6 5 6 面面像表表纂 18 者本中有余篆则 1. 本样加入 16 3 编入 16.1 至 四条 2 2 5 加入 16.1 或 26.1 1入 16.1 或 26.1 17 21,者次刊介余篆则 1. 大孝

JIA 80 mg 催代敵戰的 22. (0°C~4°C) 超光接着 28.冷冻尽存 24.溶血,增光保存 25.其色: 薄聚酸塩pH 约.46.

复核:

检测人员: (1~1) 当人的

加强银码主约 g/L, 4℃冷藏 26. 氢氧化化铅至 PH>12

1

市校: M 女子 企业代表:

151

检测编号:2023-06-009 口单位/区项目名称:揭阳市威源类佳环保有限公司土壤、地下水自行监测 地址:揭阳市揭东区正滘镇东经路尾欧展电厂东则 区《水和废水监测分析方法》(第四版) 口共它 检测日期: 2023年7月/2日 方法依据: 区HJ 164-2020

样品编号		水库				现场测定	迅			~.7	感官描述	42)		※契及 京	但在	47.47	
	检测点位	三三	祖 (5)	pll 读数	pli 16	电导率 ORP (µs/cm) (mV)	ORP (mV)	DO (mg/L)	型是此 (NIU)	17、任	内限可 元约	優切	参週 項正	作品公本 样量(mL)	万人人	± 蒸	佐
S202306009	023	11:43	\	١	\	`		\	\	15	43	· · · · · · · · · · · · · · · · · · ·	三億甲烷、四億 化碳、米、甲苯	G/40	17	2	
														155			
S. 依器校准: 週前 (1, pH 3, ORP 标准缓冲溶液值;	标准缓冲/	中容液值: / 測量 mV 测量位: /	/ 測		~ >	2、pH标准缓冲溶液值; 4、浑浊度标准烃准液值;	E銀并常 生校准務		- / 過量值: /	一一一		中); 2、电导率标准校准液; / NTU 备注: P 为聚	校准液: / ps/cm 割量值: / us/cm 备注: P 为聚乙烯塑料瓶 (相); G 为硬质玻璃瓶	测量值: (格): (- / · · · · · · · · · · · · · · · · · ·	/ µs/cm; 硬质玻璃瓶
仪器型号编号: pH	仪器型号编号: pl1/mV/溶解氣測量仪:		-E-	~) 电晶) 电导率仪; (型号/编号;	型号/编	4.0	6) 水温计 (编号:	编书:	_) 空盘气压表: (草号/编号;	(類号/韓号:	~	0	
水位仪: (型も/編书: 。 	d: /) 強版後: (割功/羅功/	(X: C	部分(銀石	ALTE ACTOR	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7		al control	100 100	10000		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
74 四 日 岩	7. NaOII. pH>12.8. L.L.	11. 水杉中町	% HC110	MITTANOS ml 9.11.	東北京記 - 永徳中富	AN ISA 3 IX HOI2m	ALL HAUSE	OH, pH 3°	5.7 IH;PO; 18	THE PART OF THE PA	94, muon <u>.</u> 829 a.2% (g~0.02 g 4 氧化物法	PASSES: LATINO, INGENTION—2、AMILIANS 赞美等最高的 15。2月 PNOS, PHSZ。4、FEBOL 解析操作 赞为4、FEBOL 25-10.00 25-10.00 25 通序 经存储分别 医角头角膜 使用格米多数 医角头骨部 使用格米多数分词 医抗性动物 化乙基苯基甲基苯基甲基苯基甲基苯基甲基苯基甲基苯基甲基苯基甲基苯基甲基苯基甲基苯基	n人甲醛, 使甲醛含 2 ml(原子荧光法)	*************************************	PA E HESO :使其含氧3	24. pH<
 	13.加入 HCD 至 pH 用 1·10HCL M至 pH	I<2 14. IL 水 II<2 加入 0.	4年4年入 01 g0.1	5 ml % % 92 g bř.bk.	C在NYST使 血胶管去分	二 mol/L 都 大氣 18. 次	4g 损坏的 水中有余3	级 使指指的 原则 1 L 水	pHelt, 整件 推加人 16 s	22475 IS. Ng NY P. NY	MICHERICALES WEDS 19. JA	於附至 0.2 [入 HC] 多	18.加入 HCI 至 pH<2.14.11. 尽样中加入 S ml 发光化排落度 (1 molt. FM 是 模型的) 是光光存 [15.加入前位磁铁的第 0.2 pU0.5 pU 原子残余篇 [16.11. 水样即 HNO; (1 1) 2 m mi. pI < 2 15. 月) 1 m m i 到至 pH<2。加入 0.01 g0.08 更形的重微层态余值 [18. 芯水中有余氮则 1 L. 水样加入 No. mg 液代硫酸的 19.加入 HCI 重 pH<2。20.加入 HCI 或 Non 至 pH T 21. 岩水中有余氮则 1 L. 水样	第 16.1L 水料》 Cl OR NAOH 至 pH	3 HNO.CT	1) 20 ml. pI 中有余款则	H N H
	JIA NO mg 进代碳酸钠 22, (0°Q-4°C) 通光保存 23.冷淡以存 24. 溶結, 逐光配序 25.共乱; 宏氧化钠笔 PI>12	酸的 22. (07.	2-4°C) &	证凭保存 2	3. 冷淡似	(F. 24, (54m)	近先保存	5 25. 共位:	医氧化物金	PII>12	24年至112日 12日 12日						

检测编号:2023-06-009 口单位//D项目名称:揭阳市晟灏美佳环保有限公司主壤、地下水自行监测 地址:褐阳市港东区正滘镇东经路尾欧晟电厂东则

检營田期:2 水位: ✓ m	023年	7月/2日 井添:/	E	方法 采样方	沃雄: 八: 素	方法依据: 四HJ 164-2020 采样方式: 瞬时采样	4-2020		大型、	四《水和废水水期:口枯水	→ 財 □	活力	法》(第四版 气温;		天气状况:明	ET.	
		型 (A)				现场测定	兴				殿山描述	321		索 및 L T		***	
样品编号	检测点位	大 本 年 百	型(2)	Hd 数数	pH 像 正值	(mo/sm) 幸音事	ORP (mV)	DO (mg/L)	函用 (DIV)	1 4	内眼可 见物	凝 和	验验项目	谷命次不 样星(mL)	大大	英文	茶
\$202306009 AREAS	SARING A	9:23	٨	1	\	1	/	/	2	R	142	15	成和時,國間可及檢	P/500	22	-	-
-													总硬度、TDS	P/500	22	-	
													硫酸盐、氯化	P/500	22	-	
													物、LAS				
							he lile is						Fc, Mn. Al. Na	P/1000	-	-	
													Cu. Zn. Cd. Pb	P/1000	1	-	
													Hg	P/500	25	-	
													As, Se	P/500	6	-	
1, 仪器校准: 测前 (1, pl 3, ORP 标准缓冲溶液值;	H 标准线	野中溶液值 mV 測		調査値		、 pH 标 科政废标准	在纸子沒 校准後信	齊換值:	(借: / 劉量催: / 2、pH标准缓冲溶液值; / 刻量催: /) 劉量億: / mV 4、浑浊度标准液准液催: / NTU 減量值: / NTU	# #i) ; 2 NTU	, E	2、pH标准缓冲溶液值; / 测量值; /); 2、电导率标准校准液; / mycm 测量值; 译迹使标准按准液值; / NTU 测量值; / NTU	所准校准派: / μs/cm 測量位: / μs/c 备注: P 为聚乙烯澄料流(桶); β 为暖炭玻璃流	過量位: 補); G)	() () () () () () () () () () () () () (ps/cm; 過無
	仪器型号编号: pH/mN/溶解氧测量仪: (型号/编号: \$X825/XYC-035) 电导率仪: (型号/编号: みをや: (数号/编号: nx/smrl/xyC-043) 油色化: (数号/编号: wzn.15s/xyR-065)	(集号/编/C-043)	号: SX8	25/XYC	-035) F	3号率仪: WZB.17	(東京編)	등: DDB	N-350/ XYE	5-003)	(学) 太陽大	F: XY	(型号编号: SX825/XYC-035) 电导率仪: (型号编号: DDBJ-350/XYB-003) 水温甘(编号: XYC-038) 空盒气压表: (型号编号: DM号K/L-d/S) nds) 油面化。 (型号编号: W7RJ-75/XYR-005)	气压表: (型号	編四: 「	3X/cw/c	20-
H C	保存方式: 1. 加田	NO ₁ 数化使p	H1~2 2	S. A. HNO.	(佐美含用)	达到 1% 3	M HNO.	pH<2 4	f. Alltapoa 10	Tepit M	74. H0.01 g	~0.02 g	保存方式: J.J. HNO) 競化集件 1~2 2.加 HNO: 优表電法網 1% 3.加 HNO: 卸子2 4. JILIPO 単序向 約54. 用 3.0.1 g~3.0.2 が A. 1 g) 6. H-SO. pH < 2	加入甲醛、使甲醛	体积浓度为	1% 6. HzS	O ₄ , pH×
经日期代	7. NaOH, pH>12.8	1.11人水样中的	WE HOLD	0 ml 9.1	L水样中法	II张 HCl 2 ii	ID. Na	OIL pH8-	-9 11. Juic	1 (CHES)	0.2%(氧化物法	7. N.S.OH. pH > 12.8. 1.L. 大科中加税 HCT 10.ml - 9. 1.L. 水洋中加税 HCT 2.ml - 10. N.SOH. pH 8-9 - 11. 加TCT 侵其含动运到 0.2%	2 mtC原子黄光淡	012. Jr HN	0, 使其各国	宏翔 0.2
午甲光》	18.加入 HCl 至 p	H<2 lk.1L.)	水径中加入	5 ml %	氧化异溶液	(1 mol/L A	4.8 部外間	% 使指指	DHNI 遊光	A. 15.	加入原代配的	20 AMS	13. 加入 HCI 至 pH<2 16.1L 水淬中加入 5 ml 氧氧化溶溶液(1 mo/L 4/4 g 3/环加数 使指出的pHSIL 避光放弃。16. 加入债凭偿债的 6.2 gl - 0.5 gl . 除去残余复。16. LL 水停加 INO (1+1) 20 ml . pH<2 17.	(氣 16.1L 水样)	AL IINO, CI	+13.20 ml. p	H<2 17
XXX III W	用 1-10HC1 概卷 1	pH≤2, MA	0.01 g~0), 02 s. Jil.J	4.血酸除去	会派 18.7	水中有余章	(M 1 L #	ぐ详加入 80 m	s Witti	脱钙 四加	E Y	用于1004C1 黄色 de S2。加入 0.01 g~0.02 g db 体白鳞藻去会加 18. 等水中有余规则 1.1 水洋加入 80 mg 硫代磺酸钠 19.加入 10.1 至 pul S2 20.加入 10.1 度 kadh 至 d4 7 21. 著水中有余规则 1.1 水拌	C1 式 NaOH 至 pt	47.21. 岩)	K中自企氣则	111.16
	加入 80 mg 硫代硫酸钠 22, (00~4℃) 聚光聚存 23.冷冻像存 24.常温,整治保存 25.异他: 11. 水样内加浓 IKU 5 ml	UNEH 22, (0	T-4T)	近光保存	23. 冷海保	存 24. 常温	推为保存	25. 坑他:	11、水件中	IIIX IICI	5 ml						

第版 地页

的女子企业代表:

开核:

复核: 分列 フ

複製人员: イアー

下水采样记录表 型

检测编号: 2023-06-009 口单位/四项目名称: 揭阳市最憑美佳以保存限公司土壤、地下水自行监测 地址: 揭阳市揭东区玉滘镇东经路居欧展电厂东顺 四《水和炫水临测分析方法》(第四版) 口其它 方法依据: INU 164-2020 检测日期: 2023 年7月 12日

its/cm: 各注 保存方式,1. 声 INO,酸化使 p11~2 。2. 加 INO,使决全链达到 1% 3.加 INO,p1~2 。4. 加 inO,p1~2 。4. 加 inO,p1~10 g94。用 inO g~10 g 4. 加 inO g~10 g 4. 加 inO,p1~2 g 4. 加 inO g~10 g 4. 加 inO g~10 g 4. 加 inO g 4. 加 i 7. NaOH, pi > 12.8 1.L. 水棒中加淋 HC110 mi = 9.11. 水棒中加淋 HC12 mi = 10. NaOH, pi 8 ** 9 = 11. 加HC1 处决高达到 0.2%(延延被送)1.L. 水棒中加淋 HC12 mi (原子安治速)12.加 HNO+ 使共全用达到 0.2% 13.加入 HCI 单 pI<2 H-11. 米样中加入 5ml 氦氧化ή溶胀(I molt. 64g 损坏的物 使端部的时间,滤光深停 15.加水的铁锅搬搬车0.2g/L~6.5g/L 除去级金额 16.1L 水样加 IRNO/CH 12.0ml. pI<< 17. 备注:P 为聚乙烯塑料瓶(桶);G 为硬质玻璃瓶 份 数 天气状况:以 / us/cm 测量值: 保存方式 14 22 26 9 22 25 22 空盆气压表: (型号/编号; 样量(mL) 容器及采 G/1000 P/1000 G/500 G/500 G/500 G/500 G/500 气道: / ℃ 电导率标准校准液。 来前废盐, 阳酸盐, 挥发性酚类 氟化物、磺化物 检测项目 六价格 嘉化物 耗氣量 飲名物 氨氮 ~ 1 ÷ □ 縣 幻 12); 2, 感官描述) 水温汁(循母: 1 肉眼巾 光锁 14 mV 4、浑浊度标准校准液值; / NTU 测量值; / NTU 测量值: / 水期: 口枯 17 联 14 が発送 (NTC) 3、仅器校准: 剥前(1、pH标准缓冲溶液值: / 別量值: / 2、pH标准缓冲溶液值:/ (µs/cm) (mV) (mg/L) pH 惨 化导率 ORP DO 人) 由昇率仪: (型号/衛号: 別物測定 井深: / m 采样方式: 路的梯 正值) 浊度仪: (型号/编号 仪器型号编号: pH/mV/溶解氧测量仪: (型号/编号: 開光 (%) mv 测量值: 4:13 7. 本国国 A.安治公园 检测点位 3、ORP 标准缓冲溶液值: m / 水位仪: (型号/编号: \$202306009 水位: 样品编号 样品现场

用于10月6日间在10月8~9.10人0.01 8~0.00 8 货售加速额头套第二18 岩水中有金属则 11 片光中的金属则 11 片光中的金属测 11 片形中的金属测 11 片形中的金属测 11 片形中的金属测 11 片形中的金属测 11 片形

加入 80 m 强代的股份 22、(0℃~4℃) 建光房车 23 冷花核花 93. 常温,建光体子 25. 其他,瞬饱吃的山 约 40、加强晚间至约 5/1,4℃冷凝。25. 复红花的穿 211.57

収核: 分とい

松原人点: 52/3 少わり

处理情况

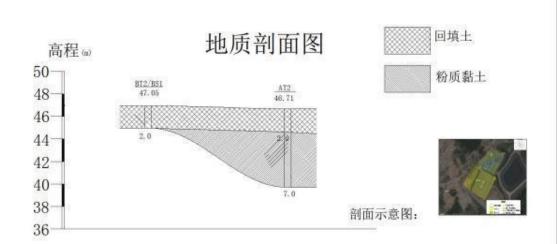
場点

部人

企业代表:

154

检测编号:2023-06-009 口单位/四项目名称:揭照市最淡美住环保有限公司土壤、地下水自行监测 地址:场阳市遏东区玉滘镇东经路居欧聂屯厂东则 区《水稻废水监测分析方法》(第四版) 口其它少时 下井 巴士 巴塞 方法依据: NHJ 164-2020 检测日期: 2023年7月/2日


样品編号 检测点位 S202306009 4年2636 S202306009 4年2636 S202306 S202		光			现场测定	出			nece	感官描述	121		次學及立	但在	対分	
\$202306009 64663		- 旧 (°)	r pH 读数	pH 俊 正位	电导率 (ps/cm)	ORP (mV)	DO (mg/L)	新 (NTU)	1, 4,	內眼可 见物	惠 81	检测项目	样量(mL)		数を	本
5 7023 06 wg		2	\	\	1	\		\	143	147	14	三氯甲烷、四氯化碳、苯、甲苯	G/40	17	2 01	
	40.5 P	*	\	\		\	\	\	\	\	1	過期後,同意	61140	71	_	
5. 仪器校准: 测前 (1. pH 标准缓冲溶液值: 3. ORP 标准缓冲溶液值: / mV 测	重要冲容液位 / mV	40	- 華	/ 2, mv 4.	2、pH标准缓冲溶液值; 4、淬迫度标准校准液值;	袋冲溶	液值:	 	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1); 2, NTU	라); 2、电导率标准校准液; <tu p="" td="" 为<="" 备注:=""><td>校准後: / µs/cm 型量值: / µs/cm 备注: P 为聚乙烯塑料瓶(前): 6 为硬质玻璃瓶</td><td>us/cm 测量值: 希塞料瓶 (桶), 6</td><td>/ n</td><td>us/cm; 玻璃瓶</td></tu>	校准後: / µs/cm 型量值: / µs/cm 备注: P 为聚乙烯塑料瓶(前): 6 为硬质玻璃瓶	us/cm 测量值: 希塞料瓶 (桶), 6	/ n	us/cm; 玻璃瓶
仪器型号编号: bH/mA/溶解氧测量仪: 水位仪: (型号/编号:	<u> </u>	(型号/编号:) 強度仪:	(22年) (24年)	^	电导率仪:(型号/编号: /)	型与/衛生	7: 7	0) 水質计 (縮忠:	编句:) 空盘气压表: (型号/编号:	(型号)除号:	,	0	
	LII HNO REK	∑ pH 1~2	2. Jil HNO3	他共介銀行	55 1% 3/	HINO),	pH<2 4	MILPO, W	Ppli 855	4. //fo.01 g	-0.02 g §	保存方法:Lintroo 機是之 pt 1~2 g. in thoo, 使法不是达到 1% g b it in thoo. pt <2 g. in thoo, pt <2 g. in thoo distribution on property of the constraint of the constrai	加入甲醛,使甲醛	体制常度为 1	% 6. HESO	Hd +
样品现场	1 至 pH<2 15. 两至 pH<2 15.	1. 水林中加 八 4. 41 gr	1入 5 ml 知 1人 5 ml 知	和化物溶液 阿化物溶液 F山酸熔去/	(1 mo/L 4)H (2 m 18. 名/	8 33体制 以上在余分	5, 1977.73 5, 1977.73 5,11 1. A	pitell,遊館 许加入 80 m	X存 15. 8 MATCHES	AIN AND THE SECOND	APLANDES (紹介: 0.2) 入 [[0.1] 3	- 17 JUNE HOLD TO THE WASHINGTON TO THE WASHINGTON TO THE WASHINGTON TO THE WASHINGTON THE WAS	- Z mittes : X X x x x x x x x x x x x x x x x x x	JI JINO ₁ (1-	DOOMLPH 中有金属側	3 V I
加入 80 mg 硫代硫酸钠 22.	加入 80 吨 硫代硫酸钠 22、40℃-4℃;灌水保存 23.冷冻保存 24.常温,建污染存 25.异他;氦氧化钠的 四>12	00 C-4C) 避光保存	33. 冷冻保	字 24. 常温,	進光保存	25. 异他:	氮氧化剂价	PH > 12	と)対応 211 > 12						

附件 7 现场土壤钻孔柱状图

工程	名称			揭阳市晟测	原美佳环保有限公司土壤、	地下水环境自行监	第1页	
	标		E: 116	6° 29′ 53″	N: 23° 39′ 25″	天气		晴
钻机	Name and Address of the Owner, where	ZT-1	105	钻孔编号	AT2	孔口直径	1	10mm
	程 (m)	46. 8		开工日期	2023/06/08	初见水位		/
占探深	度 (m)	7		竣工日期	2023/06/08	稳定水位		/
地层编号	时代成因	层底深度 (m)	分层厚度(m)	柱 状 图 1: 50	地层描述	<u>术</u>	取样	标尺
•	ď	2.0	2.0	ļ	対集土: 黄棕色・松散、干・由中・細形	步的砂環土组成	0-2.0	1 2 3
0	a.	5.0	7. 0		分质黏土: 黄棕色,松散,干,主要由和	3,蘇較粗成	6.6~7.0	4 5 6 7 8 9
								11 12 13 14 15

工程	名称				原美佳环保有限公司:	上壤、		自行监测项		100
坐					N: 23° 39′ 26″	4,1765	天生			晴
钻机		ZT-1		钻孔编号	BT2/BS1		孔口1		11	Omm
	程 (m)	47.		开工日期	2023/06/08		初见7			/
占探深	度 (m)	2	2	竣工日期	2023/06/08		稳定力	k位	200	/
地层编号	时代成因	层底深度 (m)	分层厚度 (m)	柱 状 图 1: 50	地	层描	述		取样	标尺
•	\$	2.0	2.0	į	·填土: 栗色、松散、潮、由中	,细砂(的砂壤土粗或			1 2 3 4 5 5 6 8 9 9 110 111 112 113 114 115
4-107	单位	L-14	市建环	环保科技有限	長公司 校对		陈宏健	审核	-	陈键圳

附件 8 土壤地质剖面图

JSQW/JL2501

检测报告

 受检单位:
 揭阳市晟源美佳环保有限公司

 检测项目:
 土壤二噁英类检测

 检测类型:
 来样委托

 报告编号:
 20230317 01

 签发日期:
 2023 年 07 月 04 日

江苏全威检测有限公司 Jiangsu Authority Testing Co., Ltd.

江苏全威第 20230317 01 号

第1页共6页

声明

- 一、本报告无授权签字人签名,或涂改,或未加盖本公司红色检验检测专用 章及其骑缝章均无效;
- 二、本报告部分复制,或完整复制后未加盖本公司红色"检验检测专用章" 均无效;
 - 三、未经同意本报告不得用于广告宣传;
- 四、本报告仅适用于本次采集/收到的样品,报告中所附限值标准均由客户提供,仅供参考;
- 五、对本报告如有疑议,请于收到报告之日起十个工作日内向本公司提出, 逾期不予受理。

江苏全威检测有限公司

地址: 常州市武进区常武中路 18 号常州科教城南京大学常州科技大厦 A428 室

邮编: 213164

电话: 0519-83986628

传真: 0519-83986638

江苏全威第 20230317 01 号

第2页共6页

检测信息

委托方	广东信一检测技术股份有限公司
 反托方地址	广州市黄埔区瑞泰路7号自编二栋(部位:二楼203房)
委托日期	2023-06-13
委托类型	来样委托
□采样方/ ☑送样方	广东信一检测技术股份有限公司
样品类别	土壌
检测仪器	高分辨气相色谱-高分辨双聚焦磁质谱联用仪 (Thermo DFS,实验室编号:QW-EQU-016)
检测日期	2023-06-15-2023-06-30
备注	r .

本页完

江苏全威第 20230317 01 号

第 <u>3</u>页共 <u>6</u>页

土壤二噁英类检测结果

样品编号		样品名称			检測结果 (单位: ng TEQ/kg)			
20230317-1		土壤	土壌(TR202306009 03104)			9.8		
Į.	以下空	自						
- 1			- 1		V			
-								
备注	(2) 毒性当量	辨质谱法 因子 TEF 3		量因子 I-TEF	定义,	稀释高分辨气相色谱-高分 松 W		
编制人	外	hmo	复核人	SHE	4	一种人的现在		
批准人	陶神「かん	7	批准时间	الاملا	07.04	检验检测专用章		
		1	****本页	mir again				

162

1 类纲

样品信	息:							
样品类	型 土壌			样占	編号	20230317-1		
样品名	称	土壤(TR20	2306009 03104)	样占	路接收日期	2023-06-15		
样品状	态	棕色砂壤土		样品	品称样量(g)	5.02		
	- m * *		样品检出限	实测质量的	友度(w)	毒性当量	(TEQ)质量浓度	
	二噁英类	\$3 0	ng/ kg	ng/ k	g	I-TEF	ng TEQ /kg	
4	2,3,7,8-T ₄ CD	D	0.02	0.60		1	0.60	
多氯代	1,2,3,7,8-P ₅ C	DD	0.1	2.1		0.5	1.0	
_代	1,2,3,4,7,8-H	₀CDD	0.1	1.4	9	0.1	0.14	
· 「 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	1,2,3,6,7,8-H	₀CDD	0.1	2.1 3.2		0.1	0.21 0.32	
央升	1,2,3,7,8,9-H	6CDD	0.08			0.1		
对一	对 1,2,3,4,6,7,8-H ₇ CDD		0.04	34		0.01	0.34	
15.575	O ₈ CDD		0.2	4071		0.001	4.1	
	2,3,7,8-T ₄ CD	F	0.04	1.2		0.1	0.12	
	1,2,3,7,8-P ₅ C	DF	0.06	3.5		0.05	0.18	
8	2,3,4,7,8-P ₅ CDF		0.08	2.2		0.5	1.1	
抓	1,2,3,4,7,8-H	6CDF	0.08	4.4		0.1	0.44	
多氯代二苯并呋喃	1,2,3,6,7,8-H	6CDF	0.06	5.0		0.1	0.50	
苯并	2,3,4,6,7,8-H	6CDF	0.06	4.9		0.1	0.49	
呋	1,2,3,7,8,9-H	6CDF	0.06	0.80		0.1	0.080	
N	1,2,3,4,6,7,8-	H ₂ CDF	0.06	13.		0.01	0.13	
	1,2,3,4,7,8,9-	H ₂ CDF	0.08	2.3		0.01	0.023	
	O ₈ CDF		0.1	9.3		0.001	0.0093	
二咽英	类总量∑(PCI	DDs+PCDFs)					9.8	

- 注: 1. 实测质量浓度(w); 二噁英类质量浓度测定值(ng/kg)。
 - 2. 毒性当量因子 (TEF); 采用国际毒性当量因子 I-TEF 定义。
 - 3. 毒性当量(TEQ)质量浓度: 折算为相当于 2,3,7,8-T₄CDD 的质量浓度(ng TEQ/kg)。
 - 4. 当实测质量浓度低于检出限时用"N.D."表示, 计算毒性当量(TEQ)质量浓度时以 1/2 检出限计算。

本页完

江苏全威第 20230317 01 号

第5页共6页

附表 2

	样品编号		20230317-1	
	提取、进样内标	回收率 (%)	回收率范围(%)	判定
多	¹³ C ₁₂ -1,2,3,4-T ₄ CDD	100	100	合格
多氯代二苯并一对一二噁英	¹³ C ₁₂ -2,3,7,8-T ₄ CDD	100	25~164	合格
76:	¹³ C ₁₂ -1,2,3,7,8-P ₅ CDD	108	25-181	合格
并	¹³ C ₁₂ -1,2,3,4,7,8-H ₆ CDD	110	32~141	合格 合格
94	¹³ C ₁₂ -1,2,3,6,7,8-H ₆ CDD	104	28-130	
-4	¹³ C ₁₂ -1,2,3,7,8,9-H ₆ CDD	100	100	合格
053	¹³ C ₁₂ -1,2,3,4,6,7,8,-H ₇ CDD	104	23-140	合格
英	¹⁵ C ₁₂ -O ₈ CDD	105	17~157	合格
	¹³ C ₁₂ -2,3,7,8-T ₄ CDF	103	24-169	合格
0.000	13C ₁₂ -1,2,3,7,8-P ₅ CDF	105	24~185	合格
多知	¹³ C ₁₂ -2,3,4,7,8-P ₅ CDF	108	21~178	合格
代	13C ₁₂ -1,2,3,4,7,8-H ₆ CDF	100	32~141	合格
*	¹³ C ₁₂ -1,2,3,6,7,8-H ₆ CDF	103	28~130	合格
并	13C12-2,3,4,6,7,8-H ₆ CDF	103	28-136	合格
多氯代二苯并呋喃	13C12-1,2,3,7,8,9-H ₆ CDF	114	29~147	合格
5750	¹³ C ₁₂ -1,2,3,4,6,7,8-H ₇ CDF	103	28~143	合格
	13C12-1,2,3,4,7,8,9-H ₇ CDF	102	26-138	合格

报告结束

江苏全威第 20230317 01 号

第<u>6</u>页共<u>6</u>页

(信一) 检测 (2023) 第 (06009) 号

揭阳市晟源美佳环保有限公司土壤、地 项目名称:

下水环境自行监测

检测类别: 委托检测

项目类别: 地下水、土壤

报告日期: 2023年7月31日

第1页共14页

声明

- 1. 本公司保证检测的科学性、公正性和准确性,对检测数据 负责,并对委托单位所提供的样品和技术资料保密。
- 报告无签发人签名,或涂改,或未盖本公司检验检测专用章、骑缝章均无效。
- 3. 非经本公司书面同意,不得部分复制报告(完整复印除外)。
- 4. 送样委托检测数据仅对本次受理样品负责。
- 对检测报告书若有异议应于收到报告书之日起十五日内向 检测单位提出。

地址:广州市黄埔区瑞泰路7号自编二栋

(部位:二楼203房)

电话: 020-31602260

邮编: 510700

第 2 页 共 14 页

广东信一检测技术股份有限公司检测结果报告

一、检测目的

我公司于2023年6月8日至2023年7月12日对"揭阳市晟源美佳环保有限公司土壤、 地下水环境自行监测"地下水、土壤进行采样检测。

二、检测内容

2.1 地下水检测内容

依据《地下水环境监测技术规范》(HJ 164-2020)、《建设用地土壤污染状况调查技术导则》(HJ 25.1-2019)、《广东省建设用地土壤污染状况调查、风险评估及效果评估报告技术审查要点(试行)》(粤环办(2020)67号)和《地块土壤和地下水中挥发性有机物采样技术导则》(HJ 1019-2019)、《工业企业场地环境调查评估与修复工作指南(试行)》(2014年 11月)、以及委托方提供的监测方案要求,在地块内布置的3个地下水监测井(自编号:BSI、ASI、DZS)进行地下水水质采样检测,地下水检测项目、检测频次和检测人员信息见表1。

表 1 地下水检测项目、频次和检测人员信息

检测点位	样品性状	检测项目	采样日期	采样人员
BSI	无气味、无肉眼可见物、淡黄	水位、色度、嗅和味、浑浊度、肉眼 可见物、pH 值、总硬度、溶解性总固		<
ASI	无气味、无肉眼可见物、淡黄	体、硫酸盐、氯化物、铁、锰、铜、锌、铝、挥发性酚类、阴离子表而活性剂、耗氧量、氮氮、硫化物、钠。 亚硝酸盐、硝酸盐、氟化物、氯化物、	2023.7.12	伍剑平、 吳方昕
DZS	无气味、无肉眼可见物、淡黄	礦化物、汞、砷、硒、镉、铬(六价)、 铅、三氟甲烷、四氯化碳、苯、甲苯		

第 3 页 共 14 页

2.2 土壤检测内容

依据《土壤环境监测技术规范》(HJ/T 166-2004)、《建设用地土壤污染风险管控和修复监测技术导则》(HJ 25.2-2019)、《广东省建设用地土壤污染状况调查、风险评估及效果评估报告技术审查要点(试行)》以及委托方提供的监测方案要求,对委托方布设的 4 个土壤检测点(自编号:AT1、AT2、BT1、BT2)进行采样检测。为调查污染物的垂向分布,每个采样孔采集柱状分层样品,土壤表层 0.5m 以内设置至少一个采样点,0.5m 以下采用分层采样;保证在不同性质土层至少有一个土壤样品,采样点设置在各土层交界面;地下水位线附近至少设置一个土壤采样点;当同一性质土层厚度较大(2 米以上)或同一性质土层中出现明显污染痕迹时,根据实际情况在同一土层增加采样点。原则上,每个钻孔至少采集 1~7 个样品进行实验室分析。采样深度原则上应为 0~8m。土壤检测项目、分层采样信息、检测人员等情况见表 2。

点位编号 采样位置(m) 样品性状 检测项目 采样日期 采样人员 0.2~0.3 (0.2) AT1 黄、砂土 浅棕、砂壤土 0-0.2 (0.1) 理化性质、重金属和无机 1.7~1.9 (1.7) 浅棕、砂壤土 物、半挥发性有机物 AT2 3.0-3.2 (3.1) 浅棕、砂壤土 (SVOCs)、挥发性有机 物 (VOCs)、锡、银 4.7~5.0 (4.7) 黄棕、砂土 2023.6.8 吴方听、施润光 6.6-7.0 (6.7) 黄棕、砂土 理化性质、重金属和无机 物、半挥发性有机物 BT1 0.2~0.3 (0.2) 黄、砂壤土 (SVOCs)、挥发性有机 物 (VOCs)、二噁英 理化性质、重金属和无机 0-0.3 (0.1) 栗、砂土 物、半挥发性有机物 吴方听、施润光 BT2 2023.6.8 (SVOCs)、挥发性有机 栗、砂土 1.7~1.8 (1.7) 物 (VOCs)、锡、银

表 2 土壤检测项目、分层采样信息、检测人员

备注: 1、理化性质: pH值、水分:

- 2、重金属和无机物: 砷、镉、铜、铅、汞、镍、六价铬:
- 4、挥发性有机物 (VOCs); 四氯化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、 原-1,2-二氯乙烯、反-1,2-二氯乙烯、二氯甲烷、1,2-二氯丙烷、1,1,2-四氯乙烷、1,1,2-四氯乙烷、四氯乙烯、 1,1,1-三氯乙烷、1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-二氯苯、 乙苯、苯乙烯、甲苯、何二甲苯+对二甲苯、邻二甲苯;
 - 5、其他项:锡、银、二噁英

括号内为挥发性有机物的采样位置:

- 6、钻孔深度, 采样个数: AT1、AT2、BT1、BT2钻孔深度为0~8m, 各采1个样:
- 7、二噁英为分包项目,分包方为:江苏全威检测有限公司。

第4页共14页

三、检测方法

表 3.1 地下水检测项目及检测信息一览表

检测项目	分析方法	分析仪器	检出限
pH值(现场测定)	水质 pH 值的测定 电极法 HJ 1147-2020	SX825 型 pH/mV/溶解 氧测量仪	
浊度	水质 浊度的测定 浊度计法 HJ 1075-2019	WZB-175 便携式浊度计	0.3NTU
色度	地下水质分析方法 第 4 部分: 色度的测定 铂-钴标准比色法 DZ/T 0064.4-2021	-98 7	5度
臭和味	生活饮用水标准检验方法 感观性状和物理指标 GB/T 5750.4-2006 (3)	^ <u>-</u> ,	***
肉跟可见物	生活饮用水标准检验方法 感观性状和物理指标 GB/T 5750.4-2006 (4)		24 X
总硬度	水质 钙和镁总量的测定 EDTA 滴定法 GB/T 7477-1987	50mL 滴定管	5mg/L
溶解性总固体	生活饮用水标准检验方法 感观性状和物理指标 GB/T 5750.4-2006 (8)	BSA224S 电子天平	-
硫酸盐	水质 硫酸盐的测定 铬酸钡分光光度法(试 行) HJ/T 342-2007	722S 可见分光光度计	8.0mg/L
氯化物	水质 氯化物的测定 硝酸银滴定法 GB/T 11896-1989	50mL 滴定管	10mg/L
铁	水质 铁、罐的测定 火焰原子吸收分光光度法	TAS-990F 原子吸收分	0.03mg/L
锰	GB/T 11911-1989	光光度计	0.01mg/L
铜	水质 铜、锌、铅、锅的测定 原子吸收分光光	TAS-990F原子吸收分	0.05mg/L
锌	度法 GB/T 7475-1987	光光度计	0.05mg/L
铝	生活饮用水标准检验方法 金属指标 GB/T 5750.6-2006 (1)	722S 可见分光光度计	0.008mg/L
挥发酚	水质 挥发酚的测定 4-氨基安替比林分光光 度法 HJ 503-2009	722S 可见分光光度计	0.0003mg/L
阴离子表面活性剂	水质 阴离子表面活性剂的测定 亚甲蓝分光 光度法 GB/T 7494-1987	T6 新世纪紫外可见分 光光度计	0.05mg/L
耗氧量	水质 高锰酸盐指数的测定 GB/T 11892-1989	50mL 滴定管	0.5mg/L
氨氮	水质 氨氮的测定 纳氏试剂分光光度法 HJ 535-2009	722S 可见分光光度计	0.025mg/L
硫化物	水质 硫化物的测定 亚甲基蓝分光光度法 HJ 1226-2021	722S 可见分光光度计	0.01mg/L
钠	水质可溶性阳离子 (Li*、Na*、NH ₄ *、K*、 Ca ^{2*} 、Mg ^{2*}) 的测定离子色谱法 HJ 812-2016	CIC-D120 离子色谱仪	0.02mg/L

第 5 页 共 14 页

50

续上表,

检测项目	分析方法	分析仪器	检出限
亚硝酸盐氮	水质 亚硝酸盐氮的测定 分光光度法 GB/T 7493-1987	722S 可见分光光度计	0.003mg/L
硝酸盐氯	水质 硝酸盐氮的测定 酚二磺酸分光光度法 GB/T 7480-1987	722S 可见分光光度计	0.02mg/L
氰化物	地下水质分析方法第 52 部分: 氰化物的测定 吡啶-吡唑啉酮分光光度法 DZ/T 722S 可见分光光度计 0064.52-2021		0.002mg/L
氯化物	水质 氯化物的测定 氯试剂分光光度法 HJ 722S 可见分光光度计 488-2009		0.02mg/L
碘化物	水质 碘化物的测定 离子色谱法 HJ 778-2015 CIC-D120 离子色谱仪		0.002mg/I
汞			0.04μg/L
砂	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014	AFS-8520 原子荧光光 度计	0.3μg/L
硒			0.4μg/L
镅	《水和废水监测分析方法》(第四版增补版) 国家环境保护总局 2002 年 石墨炉原子吸收 法测定锅、铜和铅(B) 3.4.7(4)	AA-6880F/AAC 原子吸 收分光光度计	0.1μg/L
六价铬	地下水质分析方法 第 17 部分: 总辖和六价 辖量的测定 二苯碳酰二肼分光光度法 DZ/T 0064.17-2021	722S 可见分光光度计	0.004mg/I
铅	《水和废水监测分析方法》(第四版增补版) 国家环境保护总局 2002年 石墨炉原子吸收 法(B) 3.4.16(5)	AA-6880F/AAC 原子吸 收分光光度计	lμg/L
三氯甲烷			1.4μg/L
四氯化碳	水质 挥发性有机物的测定 吹扫捕集/气相色	8890-5977B	1.5μg/L
苯	谱-順谱法 HJ 639-2012	气相色谱质谱联用仪	1.4μg/L
甲苯			1.4µg/L

第6页共14页

表 3.2 土壤检测项目及检测信息一览表

700

检测项目	分析方法	分析仪器	检出限
pH值	土壤 pH 值的测定 电位法 HJ 962-2018	PXSJ-216F 离子计	***
水分	土壤 干物质和水分的测定 重量法 HJ 613-2011	YP502N 电子天平	
锅	土壤质量 铅、锡的测定石器炉原子吸收分 光光度法 GB/T 17141-1997	AA-6880F/AAC 原子吸 收分光光度计	0.01mg/kg
柳	100	FQ	10mg/kg
镍	土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019	TAS-990F 原子吸收分光 光度计	3mg/kg
铜		7-2.1	Img/kg
汞	土壤质量 总汞、总砷、总铅的测定 原子 荧光法 第1部分:土壤中总汞的测定 GB/T 22105.1-2008	AFS-8520 原子荧光光度 计	0.002mg/kg
砷	土壤质量 总汞、总砷、总铅的满定 原子 荧光法 第2部分: 土壤中总砷的测定 GB/T 22105.2-2008	AFS-8520 原子荧光光度 计	0.01mg/kg
六价铬	土壤和沉积物 六价格的测定 碱溶液提取 -火焰原子吸收分光光度法 HJ 1082-2019	TAS-990F 原子吸收分光 光度计	0.5mg/kg
苯胺	80	747	0.01mg/kg
2-氯苯酚		100	0.06mg/kg
硝基苯	4841		0.09mg/kg
禁			0.09mg/kg
苯并 (a) 蔥	11/1/2	-	0.1mg/kg
甝	土壤和沉积物 半挥发性有机物的测定 气 相色谱-质谱法 HJ 834-2017	8860-5977B 气相色谱质 谱联用仪	0.1mg/kg
苯并 (b) 荧葱		1034/114	0.2mg/kg
苯并 (k) 荧蒽	W. A.		0.1mg/kg
苯并 (a) 芘		88 X	0.1mg/kg
茚并(1,2,3-cd)芘	100	. N	0.1mg/kg
二苯并 (a,h) 蔥	34	CIT .	0.1mg/kg

第7页共14页

17.50

续上表:

检测项目	分析方法	分析仪器	检出限
氯甲烷			1.0µg/kg
氣乙烯		1	1.0µg/kg
1,1-二氯乙烯		Ī	1.0µg/kg
二氯甲烷		1	1.5µg/kg
反式-1,2-二级乙烯		1	1.4µg/kg
1,1-二氯乙烷		1	1.2µg/kg
顺式-1,2-二氯乙烯			1.3µg/kg
氯仿			1.1µg/kg
1,1,1-三氯乙烷			1.3µg/kg
四氯化碳		1	1.3μg/kg
1,2-二氯乙烷			1.3µg/kg
苯			1.9µg/kg
三氯乙烯			1.2µg/kg
1,2-二氯丙烷	土壤和沉积物 挥发性有机物的测定 吹扫 捕集/气相色谱-质谱法 HJ 605-2011	8890-5977B 气相色谱质 谱联用仪	1.1μg/kg
甲苯	開発 (相匹組-列開及 H) 003-2011	414077310	1.3μg/kį
1,1,2-三氯乙烷			1.2µg/kg
四氯乙烯			1.4μg/kg
氯苯			1.2µg/kg
1,1,1,2-四氯乙烷			1.2µg/kg
乙苯			1.2µg/kg
间,对-二甲苯	5		1.2μg/kg
邻-二甲苯			1.2µg/kg
苯乙烯			1.1μg/kg
1,1,2,2-四氯乙烷			1.2μg/kg
1,2,3-三氯丙烷			1.2µg/kg
1,4-二氯苯			1.5µg/kg
1,2-二氯苯			1.5µg/kg
锡	危险废物鉴别标准 浸出毒性鉴别 GB 5085.3-2007 附录 D 金属元素的测定 火 焰原子吸收光谱法	TAS-990F 原子吸收分光 光度计	0.8mg/L
银	危险废物鉴别标准 浸出毒性鉴别 GB 5085.3-2007 附录 C 金属元素的测定 石 墨炉原子吸收光谱法	AA-6880F/AAC 原子吸 收分光光度计	0.2μg/L
二噁英	土壤和沉积物二噁英类的测定间位素稀释 高分辨气相色谱-高分辨质谱法 HJ 77.4-2008	Thermo DFS 高分辨气相 色谱-高分辨双聚焦磁质 谱联用仪	

第 8 页 共 14 页

四、采样人员

吴方昕、施润光、伍剑平

五、分析人员

邓文慧、容玮楹、叶芷楠、黄思谊、徐梦婷、张泽佳、罗春秋、邹丽丽、林展静

WYT

编制: 吴清岛 审核: 饶梦文 签发: 陈泽成 签发人职务: 部长、高级工程师

签名: 入稿与 签名: 下路 签名: 产路 签数日期: 2023年7月31日

第 9 页 共 14 页

六、检测结果

表 4 地下水检测结果

检测项目	单位	ł	检测点位及检测结果				
包含料料目	4517	BS1	AS1	DZS 2.39			
水位	m	3.42	5.94				
pH 值(现场测定)	无量纲	6.6	5.7	6.0			
浊度	NTU	87	127	103			
色度	度	20	20	10			
臭和味		己有很显著的臭味	无任何臭和味	无任何臭和味			
肉眼可见物		无	无	无			
总硬度	mg/L	263	103	123			
溶解性总固体	mg/L	182	142	103			
硫酸盐	mg/L	66	41	28			
氯化物	mg/L	202	332	267			
铁	mg/L	9.36	0.12	0.08			
锰	mg/L	33.3	32.3	1.73			
铜	mg/L	0.07	ND	ND			
锌	mg/L	0.08	ND	ND			
铝	mg/L	0.022	0.049	0.010			
挥发酚	mg/L	ND	ND	ND			
阴离子表面活性剂	mg/L	ND	ND	ND			
耗氧量	mg/L	3.0	2.0	1.8			
氨氮	mg/L	57.2	3.6	0.032			
硫化物	mg/L	0.02	0.02	0.01			
钠	mg/L	1.12×10 ⁴	1.78×10 ³	136			
亚硝酸盐氮	mg/L	0.077	0.014	0.087			
硝酸盐氮	mg/L	0.73	0.25	0.83			
氰化物	mg/L	ND	ND	ND			
氟化物	mg/L	1.94	0.08	0.13			
碘化物	mg/L	ND	ND	ND			
汞	μg/L	ND	ND	0.21			
砷	μg/L	2.7	ND	0.8			
硒	μg/L	0.8	ND	0.5			
thi .	μg/L	3.4	3.2	1.9			
六价铬	mg/L	0.037	0.008	0.005			
铅	µg/L	6	2	2			
三氯甲烷	μg/L	ND	ND	ND			
四氯化碳	μg/L	ND	ND	ND			
苯	μg/L	ND	ND	ND			
甲苯	μg/L	ND	ND	ND			

第10页共14页

表 5.1 土壤检测结果

检测点位		ATI			AT2	23		
检测项目 单位 单位 T 母相		采样深度 (m) 及检测结果						
		单位	0.2~0.3	0~0.2	1.7~1.9 (1.7)	3.0~3.2	4.7~5.0 (4.7)	6.6~7.0
理化性质	рН值	无量纲	5.83	5.92	6.43	5.24	4.95	5.10
是16江州	水分	%	24.3	21.7	17.8	19.7	13.2	12.6
	455	mg/kg	0.02	0.16	0.06	0.09	0.10	0.04
	铅	mg/kg	274	144	134	195	181	128
	级	mg/kg	12	25	20	21	32	6
重金属和 无机物	铜	mg/kg	2	35	9	44	62	26
	汞	mg/kg	0.018	0.042	0.041	0.038	0.011	0.006
	M- /	mg/kg	3.78	7.72	10.9	7.37	4.54	4.34
	六价铬	mg/kg	ND	ND	ND	ND	ND	ND
81	氯甲烷	μg/kg	ND	ND	ND	ND	ND -	ND
	氯乙烯	μg/kg	ND	ND	ND	ND	ND	ND
	1,1-二氯乙烯	μg/kg	ND	ND	ND .	ND	ND	ND
	二氯甲烷	μg/kg	ND	ND	ND	ND	ND	ND
	反式-1,2-二氯乙烯	μg/kg	ND _	ND	ND	ND	ND	ND
	1,1-二氯乙烷	μg/kg	ND	ND	ND	ND	ND	ND
挥发性有	顺式-1,2-二氟乙烯	μg/kg	ND	ND	ND	ND	ND	ND
机物	氯仿	μg/kg	ND	ND	ND	ND	ND	ND
(VOCs)	1,1,1-三氯乙烷	μg/kg	ND	ND	ND	ND	ND	ND
	四級化碳	μg/kg	ND	ND	ND	ND	ND	ND
	1,2-二氯乙烷	μg/kg	ND	ND	ND	ND	ND	ND
	苯	μg/kg	ND	ND	ND \	ND	ND	ND
	三氟乙烯	μg/kg	ND	ND	ND	ND	ND	ND
	1,2-二氯丙烷	μg/kg	ND	ND	ND	ND	ND	ND
	甲苯	μg/kg	ND	ND	ND	ND	ND	ND

第 11 页 共 14 页

续上表:

	检测点位		ATI			AT2			
			采样深度(m)及检测结果						
检測项目		单位	0.2~0.3	0~0.2	1.7~1.9	3.0~3.2	4.7~5.0	6.6-7.0 (6.7)	
	1,1,2-三氧乙烷	μg/kg	ND	ND	ND	ND	ND	ND	
	四氯乙烯	μg/kg	ND	ND	ND	ND	ND	ND	
	氯苯	μg/kg	ND	ND	ND	ND	ND	ND	
j	1,1,1,2-四氟乙烷	μg/kg	ND	ND	ND	ND	ND	ND	
	乙苯	μg/kg	ND	ND	ND	ND	ND	ND	
挥发性有机	间,对-二甲苯	μg/kg	ND	ND	ND	ND	ND	ND	
物(VOCs)	邻-二甲苯	μg/kg	ND	ND	ND	ND	ND	ND	
	苯乙烯	μg/kg	ND	ND	ND	ND	ND	ND	
	1,1,2,2-四氯乙烷	μg/kg	ND	ND	ND	ND	ND	ND	
	1,2,3-三氯丙烷	μg/kg	ND	ND	ND	ND	ND	ND	
	1,4-二氯苯	μg/kg	ND	ND	ND	ND	ND	ND	
	1,2-二氯苯	μg/kg	ND	ND	ND	ND	ND	ND	
	苯胺	mg/kg	ND	ND	ND	ND	ND	ND	
	2-氣苯酚	mg/kg	ND	ND	ND	ND	ND	ND	
	硝基苯	mg/kg	ND	ND	ND	ND	ND	ND	
	恭	mg/kg	ND	ND	ND	ND	ND	ND	
半挥发性有	苯井(a)蒽	mg/kg	ND	ND	ND	ND	ND	ND	
机物	雌	mg/kg	ND	ND	ND	ND	ND	ND	
(SVOCs)	苯并(b)荧蒽	mg/kg	ND	ND	ND	ND	ND	ND	
Î	苯并(k)荧蒽	mg/kg	ND	ND	ND	ND	ND	ND	
	苯并(a)芘	mg/kg	ND	ND	ND	ND	ND	ND	
	茚并(1,2,3-cd)芘	mg/kg	ND	ND	ND	ND	ND	ND	
	二苯并(a,h)蒽	mg/kg	ND	ND	ND	ND	ND	ND	
11: Ab 100	锡	mg/L	2.6	4.0	5.0	5.4	5.1	4.2	
其他项	银	μg/L	0.6	0.5	0.6	0.6	0.9	0.3	

第 12 页 共 14 页

表 5.2 土壤检测结果

检测点位		BTI	BT2			
检测项目 单位		16.15	采样深度 (m) 及检测结果			
	检测项目		0.2~0.3 (0.2)	0-0.3 (0.1)	1.7~1.8 (1.7)	
理化性质	pH值	无量纲	7.81	5.62	6.36	
A服16.1至80	水分	%	20.1	21.8	20.0	
	幅	mg/kg	0.41	0.10	0.04	
	铅	mg/kg	226	142	155	
	採	mg/kg	43	18	10	
重金属和无机物	朝	mg/kg	108	21	12	
24111	汞	mg/kg	0.046	0.016	0.013	
	种	mg/kg	18.7	7.25	7.64	
	六价铬	mg/kg	ND	ND	ND	
31	氯甲烷	μg/kg	ND	ND	ND	
	級乙烯	μg/kg	ND	ND	ND	
	1,1-二氯乙烯	μg/kg	ND	ND -	ND	
	二無甲烷	μg/kg	ND	ND	ND	
	反式-1,2-二氯乙烯	μg/kg	ND	ND	ND	
	1,1-二氟乙烷	μg/kg	ND	ND	ND	
挥发性有	顺式-1,2-二氯乙烯	μg/kg	ND	ND	ND	
机物	製仿	μg/kg	ND	ND ND	ND	
(VOCs)	1,1,1-三氯乙烷	μg/kg	ND	ND	ND	
	四氯化碳	μg/kg	ND	ND	ND	
	1,2-二氯乙烷	μg/kg	ND	ND	ND	
	苯	μg/kg	ND	ND	ND	
	三氟乙烯	μg/kg	ND	ND	ND	
	1,2-二無丙烷	μg/kg	ND	ND	ND	
	甲苯	μg/kg	ND	ND	ND	

第 13 页共 14 页

检测点位		BTI	E	T2	
		单位	采样深度 (m) 及检测结果		
極	检测项目		0.2-0.3 (0.2)	0-0.3 (0.1)	1.7~1.8 (1.7)
7	1,1,2-三氯乙烷	μg/kg	ND	ND	ND
	四氯乙烯	μg/kg	ND	ND	ND
	氯苯	μg/kg	ND	ND	ND
	1,1,1,2-四氣乙 烷	μg/kg	ND	ND	ND
	乙苯	μg/kg	ND	ND	ND
揮发性有 in the	间,对-二甲苯	μg/kg	ND	ND	ND
机物 (VOCs)	邻-二甲苯	μg/kg	ND	ND	ND
	苯乙烯	μg/kg	ND	ND	ND
	1,1,2,2-四氯乙 烷	μg/kg	ND	ND	ND
	1,2,3-三氯丙烷	μg/kg	ND	ND	ND
	1,4-二氯苯	μg/kg	ND	ND	ND
	1,2-二氯苯	μg/kg	ND	ND	ND
	苯胺	mg/kg	ND	ND	ND
	2-氯苯酚	mg/kg	ND	ND	ND
	硝基苯	mg/kg	ND	ND	ND
	黎	mg/kg	ND	ND	ND
111 FRE 4FA Joh	苯并(a)蔥	mg/kg	ND	ND	ND
半挥发性 有机物	虺	mg/kg	ND	ND	ND
(SVOCs)	苯并(b)荧蒽	mg/kg	ND	ND	ND
	苯并(k)荧蒽	mg/kg	ND	ND	ND
	苯并(a)芘	mg/kg	ND	ND	ND
	茚并(1,2,3-cd) 芘	mg/kg	ND	ND	ND
	二苯并(a,h)蒽	mg/kg	ND	ND	ND
	锡	mg/L	3.1	2.2	3.4
其他項	银	μg/L	1.7	0.5	1.2
	二噁英	ngTEQ/kg	9.8		

-报告结束-

第14页共14页

质 控 报 告

(信一) 检测 (2023) 第 (06009) 号

项目名称: 揭阳市晟源美佳环保有限公司土壤、地

下水环境自行监测

检测类别: 委托检测

项目类别: 地下水、土壤

报告日期: 2023年7月31日

第 1 页 共 34 页

声明

- 1. 本公司保证检测的科学性、公正性和准确性,对检测数据 负责,并对委托单位所提供的样品和技术资料保密。
- 报告无签发人签名,或涂改,或未盖本公司检验检测专用章、骑缝章均无效。
- 3. 非经本公司书面同意,不得部分复制报告(完整复印除外)。
- 4. 送样委托检测数据仅对本次受理样品负责。
- 对检测报告书若有异议应于收到报告书之日起十五日内向 检测单位提出。

地址:广州市黄埔区瑞泰路7号自编二栋

(部位:二楼203房)

电话: 020-31602260

邮编: 510700

第 2 页 共 34 页

目录

一、质量保证与质量控制结果	4
1.1 地下水采样质量控制	
1.2 土壤采样质量控制	4
1.2.1 采样流程	4
1.2.2 其他注意事项	
1.3 地下水分析和土壤分析质量控制措施	5
二、采样人员	7
三、分析人员	
四、检测结果	8
表 4.1 地下水现场空白样检测结果	8
表 4.2 地下水实验室空白样检测结果	9
表 4.3 地下水现场平行样检测结果	10
表 4.4 地下水室内平行样检测结果	
表 4.5 地下水加标回收检测结果	
表 4.6 地下水质控样统计结果	
表 4.7 土壤样品现场空白样检测结果	14
表 4.8 土壤实验室空白样检测结果	15
表 4.9 土壤现场平行样检测结果	
表 4.10 土壤室内平行样检测结果	
表 4.11 土壤室内加标回收率检测结果	
表 4.12 土壤质控样统计结果	23
五、质控统计表	
表 5.1 地下水样品质控统计表	24
表 5.2 土壤样品质控统计表	
附表 1 地下水检测项目及检测信息一览表	31
附表 2 土壤检测项目及检测信息一览表	33

第 3 页 共 34 页

广东信一检测技术股份有限公司

质控报告

一、质量保证与质量控制结果

1.1 地下水采样质量控制

地下水样品的采集、保存、样品运输和质量保证等按照《地下水环境监测技术规范》HJ 164-2020、《地下水质量标准》GB/T 14848-2017、《水质 样品的保存和管理技术规定》HJ 493-2009、《重点行业企业用地调查质量保证与质量控制技术规定(试行)》及各项目分析方法标 准的相关要求进行。

地下水采样:在采集地下水样品前使用各井专属的贝勒管进行洗井(取样前洗井),直到至少3倍于现场存井水体积的井水被洗出,且地下水水温、pH、电导率、氧化还原电位等参数基本稳定,以保证可以获得新鲜、有代表性的地下水源。

在采样前洗井 2 小时内进行地下水采样,使用专用贝勒管进行采样,并直接转移到合适的 水样容器中,在样品瓶上记录编号、检测项目等采样信息,并做好现场记录。样品采集后立即 放入装有冰袋的保温箱中,保证保温箱内样品的温度 0~4℃,采样结束后及时送回实验室,监 测样品按上述标准要求进行保存。

1.2 土壤采样质量控制

土壤样品的采集、保存、样品运输和质量保证等按照《土壤环境监测技术规范》HJ/T 166-2004、《重点行业企业用地调查质量保证与质量控制技术规定(试行)》及各项目分析方法标准的相关要求进行。

1.2.1 采样流程

1. VOCs 快筛流程:用 500ml 聚乙烯密封袋,在选择的点位采集 1/3 至 1/2 的土壤、密封 揉碎后放在阴凉处静置 10min。用小标签做好标记(时间、深度),10min 后摇晃或振动 30s。 再静置 2min,然后用 PID 探头直接穿刺在密封袋顶空处 1/2 的位置,读取仪器最高读数并现场 记录;快筛前先随机抽取一个密封袋进行本底值测量和空气值测量。

第4页共34页

- 金属快筛流程: 取适量的土壤放入 500ml 聚乙烯密封袋, 揉碎后捏成一个 1-2cm 的团, 面积要比 XRF 的探头大, 然后进行测量, 并且现场记录数据: 不得直接在柱状土上测量。
- 3. VOCs 采集: 先用刮刀在采样点位上刮除 1-2cm 表面土壤, 在露出的土壤中进行采集, 使用非扰动采样器和一次性针筒,采集时要注意清除螺口和瓶身上黏附的土壤; 共采集 4 版 40ml 的样品+1 瓶 60ml 的样品,全程不得用手直接采集样品进入样品瓶。采集完毕后立即张贴标签并放入冰箱冷藏
- SVOCs、石油烃等采集:用铁铲或木勺,把样品采集进入250ml的样品瓶中,注意采集过程中要压实并采满样品瓶(可用手辅助压实):采集完毕后立即张贴标签并放入冰箱冷藏
- 5. 重金属采集:用木勺将样品直接装入1000ml聚乙烯密封袋中,采集平行样时,先放到 托盘中进行均质化处理再分装。采集完毕后立即张贴标签并放入冰箱冷藏。

1.2.2 其他注意事项

- 1. 钻机开钻之前要对探头进行消洗;同一点位,不同深度的钻探时应对设备、探头等用高压水枪进行冲洗;监测井管长要超过己知地下水埋深 2 米,井口应高出地面 0.5-1.0 米。
 - 2. 采样前把各式采样工具、快筛仪器准备好:
 - 3. 钻探出 0-1 土壤后先采集 0-0.5m 表层土样品,做快筛深度选择 0.5m 和 1.0m;
- 除表层土要立即采集样品外,初见水位、不同性质土层都需要进行采集,其余根据快筛结果判断,采样间隔不得超过2.0m;

所有采样工具、在采集不同深度的土壤时都要用纯水进行清洗。

1.3 地下水分析和土壤分析质量控制措施

按照《地下水环境监测技术规范》HJ 164-2020 相关规定,现场采样不少于 10%的平行样,实验室采用不少于 10%平行样分析、10%加标回收样分析等质控措施进行质量控制,地下水分析质控数据见表 4.1 至表 4.6。

按照《广东省建设用地土壤污染状况调查、风险评估及效果评估报告技术审查要点(试行)》 相关规定,每批次样品分析时,每个检测项目(除挥发性有机物外)均须做平行双样分析。在每 批次分析样品中,应随机抽取 5%的样品进行平行双样分析。

当具备与被测地下水样品基体相同或类似的有证标准物质时,应在每批次样品分析时同步

均匀插入与被测样品含量水平相当的有证标准物质样品进行分析测试。每批次同类型分析样品 要求按样品数 5%的比例插入标准物质样品;当批次分析样品数≤20 时,应至少插入 2 个标准物 质样品。

当没有合适的地下水基体有证标准物质时,应采用基体加标回收率试验对准确度进行控制。 每批次同类型分析样品中,应随机抽取 5%的样品进行加标回收率试验;当批次分析样品数≤20 时,应至少随机抽取 2 个样品进行加标回收率试验。此外,在进行有机污染物样品分析时,最 好能进行替代物加标回收率试验。

按照《重点行业企业用地调查质量保证与质量控制技术规定(试行)》相关规定,应防止采 样过程中的交叉污染,第一个钻孔开钻前、连续多次钻孔的设备、同一钻机在重复利用等环节, 应对钻孔设备及取样装置进行清洗并提供清洗记录;采集 SVOC 和重金属土壤样品之前应清洗 采样工具;地下水采样前应清洗设备及管路。

采样时佩戴一次性手套,使用 VOC 非扰动采样器、贝勒管等一次性采样工具;做好平行样、空白样及运输样等质控样品,从采样到样品运输、贮存和数据分析等不同阶段分析质控样品;同种采样介质,应从相同的点位采集至少一个样品作为样品采集平行样并单独封装和分析; 采集土壤样品用于分析挥发性有机物指标时,每次运输应采集至少一个运输空白样。

现场采样过程中,应当记录采样点位、采样深度、采样时间等信息;现场采样记录、现场 监测记录可使用表格描述土壤特征、可疑物质或异常现象等,同时应保留现场相关影像记录(含 地块信息、点位、经纬度、时间、天气等),其内容、页码、编号要齐全便于核查,如有改动 应注明修改人及时间。项目验收后,不作为长期监测孔(井)的采样孔(井)应当按要求完成 封孔(井)回填。

样品分析及其他过程的质量控制与质量保证技术要求按照 HJ/T166、HJ/T164、HJ/T91、 HJ493、HJ/T194、HJ/T20 等相关要求开展。对于特殊监测项目应按照相关标准要求在限定时间 内进行监测。调查单位内部质量控制人员通过现场旁站的方式进行。检测实验室应按相关技术 规定要求妥善保存已完成检测的留存样品或有机样品提取液。

样品分析测试结果应按照分析方法规定的有效数字和法定计量单位进行表示。分析测试结果低于检出限时,用"ND"表示,并注明"ND"表示未检出,同时给出本实验室的检出限值。土壤分析质控数据见表 4.7 至表 4.12。

第6页共34页

二、采样人员

吴方昕、施润光、伍剑平

三、分析人员

1

477

邓文慧、容玮楹、叶芷楠、黄思谊、徐梦婷、张泽佳、邓程、罗春秋、邹丽丽、林展静、 梁安予

第7页共34页

四、检测结果

表 4.1 地下水现场空白样检测结果

		样品编号及检测结果		
检测项目	单位	全程序空白	运输空白	
		S20230600902121	S2023060090213	
臭和味		无任何臭和味		
肉眼可见物		无		
总硬度	mg/L	ND	***	
溶解性总固体	mg/L	ND		
硫酸盐	mg/L	ND	220	
氯化物	mg/L	ND		
铁	mg/L	ND	***	
锰	mg/L	ND	20	
钢	mg/L	ND		
钟	mg/L	ND		
铝	mg/L	ND		
挥发酚	mg/L	ND		
明离子表面活性剂	mg/L	ND	***	
耗氧量	mg/L	ND		
製製	mg/L	ND		
硫化物	mg/L	ND		
钠	mg/L	ND	***	
亚硝酸盐凯	mg/L	ND	***	
硝酸盐氯	mg/L	ND		
氰化物	mg/L	ND	***	
氟化物	mg/L	ND	-	
碘化物	mg/L	ND	-	
汞	μg/L	ND		
静	µg/L	ND		
硒	µg/L	ND		
镉	µg/L	ND	***	
六价铬	mg/L	ND		
铅	μg/L	ND		
三氯甲烷	μg/L	ND	ND	
四氯化碳	μg/L	ND	ND	
苯	µg/L	ND	ND	
甲苯	μg/L	ND	ND	

备注: 1、"ND"表示小于检出限的结果,检出限见"附表 1 地下水检测项目及检测信息一览表";

- 2、现场空白检测结果均为未检出(ND),评价结果均合格。
- 3、测结果均为未检出(ND),评价结果均合格。

第8页共34页

表 4.2 地下水实验室空白样检测结果

45-204975 63	样品序4		序号及检测结果
检测项目	单位	KBI	KB2
总硬度	mg/L	ND	ND
硫酸盐	mg/L	ND	ND
級化物	mg/L	ND	ND
铁	mg/L	ND	ND
锚	mg/L	ND	ND
铜	mg/L	ND	ND
锌	mg/L	ND _	ND
铝	mg/L	ND	ND
挥发酚	mg/L	ND	ND
阴离子表面活性剂	mg/L	ND	ND
耗氧量	mg/L	ND	ND
類類	mg/L	ND	ND
硫化物	mg/L	ND	ND
例	mg/L	ND	ND .
亚硝酸盐氮	mg/L	ND	ND ND
硝酸盐氮	mg/L	ND	ND
氰化物	mg/L	ND	ND
紙化物	mg/L	ND	ND
碘化物	mg/L	ND . \	ND
泵	μg/L	ND	ND
砷	μg/L	ND	ND
硒	μg/L	ND	ND
镉	μg/L	ND	ND ND
六价铬	mg/L	ND	ND ND
铅	μg/L	ND	ND
三氟甲烷	μg/L	ND	
四氯化碳	μg/L	ND	-1-1
苯	μg/L	ND	
甲苯	μg/L	ND	V -

备注: 1、"ND"表示小于检出限的结果,检出限见"附表 1 地下水检测项目及检测信息一览表"; 2、实验室空白检测结果均为未检出(ND),评价结果均合格。

第 9 页 共 34 页

表 4.3 地下水现场平行样检测结果

			检测结果				
检测项目	单位	检测点位	现场平行样 1	现场平行样 2	允许/相 对偏差 (%)	偏差 要求 (%)	是否 合格
色度	度	AS1	20	20	0.0		
臭和味		ASI	无任何臭和味	无任何臭和味			1,777
肉眼可见物		AS1	无	无			****
总硬度	mg/L	AS1	102	104	1.0	144	3500
溶解性总固体	mg/L	ASI	146	138	2.8	1	
硫酸盐	mg/L	AS1	42	40	2.4	-	****
氯化物	mg/L	ASI	331	332	0.2	****	****
铁	mg/L	AS1	0.12	0.12	0.0		*****
锰	mg/L	AS1	32.4	32.2	0.3		*****
铜	mg/L	ASI	ND	ND	***	15	****
锌	mg/L	ASI	ND	ND		20	
铝	mg/L	AS1	0.053	0.045	8.2	****	
挥发酚	mg/L	AS1	ND	ND	-	-	
阴离子表面活性剂	mg/L	AS1	ND	ND			,,
耗氧量	mg/L	ASI	2.0	1.9	2.6		
類類	mg/L	AS1	3.7	3.5	2.8	2200	****
硫化物	mg/L	AS1	0.02	0.02	0.0	30	合格
钠	mg/L	AS1	1.77×10 ³	1.78×10 ³	0.3	10	合格
亚硝酸盐氢	mg/L	ASI	0.014	0.013	3.7	***	****
硝酸盐氯	mg/L	AS1	0.25	0.25	0.0		****
氰化物	mg/L	AS1	ND	ND	***	20	
氣化物	mg/L	AS1	0.07	0.08	6.7		****
碘化物	mg/L	AS1	ND	ND	***	10	
汞	µg/L	AS1	ND	ND	ß	20	
B(I	μg/L	AS1	ND	ND		20	
硒	µg/L	AS1	ND	ND		20	****
fri	μg/L	AS1	3.2	3.2	0.0	10	合格
六价铬	mg/L	ASI	0.007	0.009	12.5	15	合格
铅	µg/L	ASI	2	2	0.0	15	合格
三氯甲烷	µg/L	AS1	ND	ND	***	30	
四氯化碳	μg/L	ASI	ND	ND		30	
苯	μg/L	ASI	ND	ND		30	
甲苯	µg/L	ASI	ND	ND	- 3464	30	2000

各注: 1、地下水现场平行双样偏差要求根据各检测项目分析方法质量保证和质量控制章节及《重点行业企业用地调查质量保证与质量控制技术规定(试行)》确定:

- 2、平行双样均未检出(ND)。则不计算相对偏差:
- 3、"---"表示对该项目不予评价。

第 10 页共 34 页

表 4.4 地下水室内平行样检测结果

	单位 样品编号	12 Aug 1	检测结果					
检測项目		样1	样 2	允许/相对 偏発(%)	偏差要求 (%)	是否合格		
色度	度	S20230600903101	10	10	0.0	***	****	
总硬度	mg/L	S20230600903101	118	128	4.1		****	
溶解性总固体	mg/L	S20230600901101	182	182	0.0	***	931//	
硫酸盐	mg/L	S20230600901101	68	65	2.3	700	-12	
氧化物	mg/L	S20230600903101	272	262	1.9			
铁	mg/L	\$20230600901101	9.29	9.43	0.7			
锰	mg/L	S20230600901101	33.4	33.1	0.5			
铜	mg/L	S20230600901101	0.07	0.07	0.0	15	合格	
华	mg/L	S20230600901101	0.08	0.07	6.7	15	合格	
铝	mg/L	S20230600901101	0.021	0.023	4.5		****	
挥发酚	mg/L	S20230600901101	ND	ND	Sam	(300	****	
阴离子表面活性剂	mg/L	S20230600901101	ND	ND				
耗氧量	mg/L	S20230600903101	1.7	1.9	5.6	***	****	
氨氮	mg/L	S20230600901101	57.2	57.3	0.1	Comm		
硫化物	mg/L	S20230600901101	0.02	0.02	0.0	30	合格	
钢	mg/L	S20230600901101	1.12×10 ⁴	1.12×10 ⁴	0.0	10	合格	
亚硝酸盐氮	mg/L	S20230600901101	0.077	0.077	0.0		****	
硝酸盐氮	mg/L	\$20230600901101	0.73	0.73	0.0			
氰化物	mg/L	S20230600901101	ND	ND .		20	2777	
氟化物	mg/L	S20230600901101	1.97	1.91	1.5			
碘化物	mg/L	S20230600901101	ND	ND	***	10	****	
汞	μg/L	S20230600901101	ND	ND		20	****	
砷	μg/L	S20230600901101	2.7	2.7	0.0	20	合格	
硒	μg/L	S20230600901101	0.8	0.8	0.0	20	合格	
镉	μg/L	\$20230600901101	3.2	3.6	5.9	10	合格	
六价铬	mg/L	S20230600901101	0.038	0.036	2.7	10	合格	
to .	μg/L	S20230600901101	6	6	0.0	15	合格	
三氯甲烷	μg/L	S20230600901101	ND	ND		30		
四氯化碳	μg/L	S20230600901101	ND	ND		30	****	
苯	μg/L	S20230600901101	ND	ND	****	30		
甲苯	μg/L	S20230600901101	ND	ND	A.m.	30		

备注: 1、地下水室内平行双样偏差要求根据各检测项目分析方法质量保证和质量控制章节及《重点行业企业用地调查质量保证与质量控制技术规定(试行)》确定:

- 2、平行双样均未检出(ND),则不计算相对编差:
- 3、"---"表示对该项目不予评价。

第11页共34页

表 4.5 地下水加标回收检测结果

			枪测结果				
检测项目	单位	样品编号	加标館 浓度	加标后 浓度	加标回 收率(%)	加标回 收率要 求(%)	是否合格
铁	mg/L	S20230600902101	0.12	0.46	94.4		
锰	mg/L	S20230600902101	32.4	60.0	98.6		5255
铜	mg/L	S20230600902101	ND	0.26	90.4	85~115	合格
钟	mg/L	S20230600902101	ND	0.23	93.2	85~120	合格
汞	μg/L	S20230600902101	ND	0.17	93.8	70~130	合格
种	μg/L	\$20230600902101	ND	1.4	89.3	70-130	合格
硒	μg/L	S20230600902101	ND	1.3	91.7	70~130	合格
幅	μg/L	S20230600902101	3.2	7.8	92.0	90~110	合格
六价铬	mg/L	S20230600903101	0.005	0.024	95.0	90~110	合格
铂	μg/L	S20230600902111	2	4	90.9	85-115	合格
三氯甲烷	μg/L	S20230600902101	ND	49.2	97.0	60~130	合格
四氯化碳	μg/L	S20230600902101	ND	42.2	82.9	60-130	合格
苯	μg/L	S20230600902101	ND	42.2	83.0	60~130	合格
甲苯	μg/L	S20230600902101	ND	47.1	92.8	60~130	合材

各注: 地下水加标回收率要求根据各检测项目分析方法质量保证和质量控制章节及《重点行业企业用地调查质量保证与质量控制技术规定(试行)》确定。

第 12 页共 34 页

M7.

表 4.6 地下水质控样统计结果

		C 4.0 20 1 750				
检测项目	单位	标样编号	序号	測定值	标准值	是存合格
总硬度	mg/L	B22020243	1	151	157±8	合格
硫酸盐	mg/L	B21070011	t	5.41	5.15±0.35	合格
氧化物	mg/L	B21060184	1	1.66	1.61±0.13	合格
铁	mg/L	22091050	1	1.30	1.33±0.07	合格
锰	mg/L	202529	1	1.34	1.32±0.06	合格
铜	mg/L	201133	1	1.14	1.09±0.05	合格
锋	mg/L	21031017	1 10	0.451	0.469±0.024	合格
铝	mg/L	21081021	1	0.120	0.123±0.007	合格
挥发酚	mg/L	A22040278	1	3.12	3.21±0.15	合格
阴离子表面活性剂	mg/L	23031043	ì	2.14	2.19±0.21	合格
耗氣量	mg/L	2031111	1	3.86	3.63±0.27	合格
氨氮	mg/L	22121035	1	5.06	4.95±0.25	合格
硫化物	mg/L	21051194	1	4.56	4.52±0.25	合格
亚硝酸盐氮	mg/L	B22060034	1	0.268	0.260±0.012	合格
硝酸盐氮	mg/L	B21090111	1	3.56	3.55±0.18	合格
氰化物	mg/L	22091095	1	0.198	0.204±0.015	合格
無化物	mg/L	B21080014	1/\	1.85	1.78±0.15	合格
Sec.	1000192		1	1.25	1.21±0.11	合格
汞	μg/L	21081045	2	1.18	1.21±0.11	合格
Feb.	1400	200450	1	14.8	14.6±1.5	合格
砷	µg/L	200450	2	14.7	14.6±1.5	合格
硒	μg/L	22081075	1	14.5	15.3±0.9	合格
辆	μg/L	B2012034	1	44.1	44.6±2.6	合格
六价铬	mg/L	21041141	1	0.210	0.211±0.011	合格
\$ D	mg/L	201236	1	0.141	0.152±0.012	合格

I

第 13 页共 34 页

表 4.7 土壤样品现场空白样检测结果

		样品编号及检测结果			
检测项目	单位	全程序空白	运输空白		
	33	TR20230600902521	TR20230600902531		
氯甲烷	μg/kg	ND	ND		
無乙烯	μg/kg	ND	ND		
1,1-二氯乙烯	μg/kg	ND	ND		
二氯甲烷	μg/kg	ND	ND		
反式-1,2-二氯乙烯	μg/kg	ND	ND		
1,1-二氯乙烷	μg/kg	ND	ND		
順式-1,2-二氧乙烯	μg/kg	ND	ND		
氯仿	μg/kg	ND	ND		
1,1,1-三氯乙烷	μg/kg	ND	ND		
四氯化碳	μg/kg	ND	ND		
1,2-二氯乙烷	μg/kg	ND	ND		
苯	μg/kg	ND	ND		
三氮乙烯	μg/kg	ND	ND		
1,2-二氯丙烷	μg/kg	ND	ND		
甲苯	μg/kg	ND	ND		
1,1,2-三氯乙烷	μg/kg	ND	ND		
四氯乙烯	μg/kg	ND	ND		
氯苯	µg/kg	ND	ND		
1,1,1,2-四氯乙烷	µg/kg	ND	ND		
乙苯	µg/kg	ND	ND		
间,对-二甲苯	μg/kg	ND	ND		
邻-二甲苯	μg/kg	ND	ND		
苯乙烯	μg/kg	ND	ND		
1,1,2,2-四氯乙烷	μg/kg	ND	ND		
1,2,3-三氯丙烷	μg/kg	ND	ND		
1,4-二氯苯	μg/kg	ND	ND		
1,2-二氯苯	μg/kg	ND	ND		

第 14 页 共 34 页

表 4.8 土壤实验室空白样检测结果

松雅昭	00.524	样品序号及检测结果		
检测项目	单位	KB1	KB2	
铅	mg/kg	ND	ND	
福	mg/kg	ND	ND	
镍	mg/kg	ND	ND	
铜	mg/kg	ND	ND	
乘	mg/kg	ND	ND	
砷	mg/kg	ND	ND	
六价铬	mg/kg	ND	ND	
氯甲烷	μg/kg	ND		
氰乙烯	μg/kg	ND		
1,1-二氯乙烯	μg/kg	ND	444	
二氯甲烷	μg/kg	ND	(A)	
反式-1,2-二氯乙烯	μg/kg	ND		
1,1-二氟乙烷	μg/kg	ND	- 9	
順式-1,2-二氟乙烯	μg/kg	ND	400	
氯仿	μg/kg	ND		
1,1,1-三氯乙烷	μg/kg	ND		
四氯化碳	µg/kg	ND	***	
苯	μg/kg	ND		
1,2-二氧乙烷	μg/kg	ND	***	
三氟乙烯	μg/kg	ND	- 20g	
1,2-二氯丙烷	μg/kg	ND	197 -	
甲苯	μg/kg	ND		
1,1,2-三氯乙烷	μg/kg	ND	***	
四氯乙烯	μg/kg	ND	(2-2-1	
氯苯	μg/kg	ND	144	
1,1,1,2-四氟乙烷	μg/kg	ND	_ N	
乙苯	μg/kg	ND	W	
间,对-二甲苯	μg/kg	ND	-	

第 15 页共 34 页

续上表:

检测项目	单位	样品序号	及检测结果
但例與日	44.00	KBI	KB2
邻-二甲苯	μg/kg	ND	
苯乙烯	μg/kg	ND	1000
1,1,2,2-四氯乙烷	µg/kg	ND	
1,2,3-三氯丙烷	µg/kg	ND	-
1,4-二紙苯	µg/kg	ND	(500)
1,2-二氯苯	µg/kg	ND	V <u>III</u>
苯胺	mg/kg	ND	342
2-氯苯酚	mg/kg	ND	
硝基苯	mg/kg	ND	
萘	mg/kg	ND	
苯并(a)蒽	mg/kg	ND	1.0
茄	mg/kg	ND	-
苯并(b) 茭蔥	mg/kg	ND	-
苯井(k)荧蒽	mg/kg	ND	
苯并(a)花	mg/kg	ND	
茚井(1,2,3-cd)芘	mg/kg	ND	
二苯并(a,h)蒽	mg/kg	ND	
116	mg/L	ND	ND
银	μg/L	ND	ND

备注: 1、"ND"表示小于检出限的结果,检出限见"附表 2 土壤检测项目及检测信息一览表";

2、实验室空白检测结果均为未检出,评价结果均合格。

第 16 页共 34 页

表 4.9 土壤现场平行样检测结果

	136	7	0.00	. 8	位测结果	267	2
检测项目	单位	检测点位(m)	现场平 行样 1	现场平 行样 2	允许/相 对偏差 (%)	偏差要 求(%)	足否 合格
pH值	无量纲	AT2 6.6~7.0 (6.7)	5.17	5.03	0.14	0.3	合格
水分	%	AT2 6.6-7.0 (6.7)	12.8	12.3	0.5	1.5	合格
45	mg/kg	AT2 6.6~7.0 (6.7)	134	121	5.1	20	合格
錣	mg/kg	AT2 6.6~7.0 (6.7)	0.04	0.05	11.1	35	合格
镍	mg/kg	AT2 6.6-7.0 (6.7)	5	6	9.1	20	合格
89 S	mg/kg	AT2 6.6~7.0 (6.7)	27	24	5,9	20	合格
汞	mg/kg	AT2 6.6~7.0 (6.7)	0.006	0.006	0.0	35	合格
砷	mg/kg	AT2 6.6~7.0 (6.7)	4.28	4.39	1.3	20	合格
六价铬	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND	22	20	
苯胺	mg/kg	AT2 6.6~7,0 (6.7)	ND	ND		50	11.77
2-凯苯酚	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND	E	50	
硝基苯	mg/kg	AT2 6,6~7.0 (6,7)	ND	ND	aa.)	50	
藜	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50	****
举并(a)蒽	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50	
苊	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50	
苯并(b)类蒽	mg/kg	AT2 6.6-7.0 (6.7)	ND	ND	=	50	****
苯并(k)类蒽	mg/kg	AT2 6.6~7,0 (6,7)	ND	ND	1/2	50	****
苯并(a)芘	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50	
茚升(1,2,3-cd)芘	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50	
二苯并(a,h)蒽	mg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50	
氯甲烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50	
氯乙烯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50	
1,1-二氯乙烯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50	8,5107.3
二氯甲烷	μg/kg	AT2 6.6-7.0 (6.7)	ND	ND	***	50	
反式-1,2-二氯乙烯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND	- FEET	50	****
1,1-二氟乙烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND	22.5	50	
页式-1,2-二氯乙烯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50	0.7557
氯仿	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50	
1,1,1-三氯乙烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND	-34"	50	
四氧化碳	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND	140	50	
苯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND	***	50	
1,2-二氯乙烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND	***	50	
三氨乙烯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND	***	50	
1,2-二氯丙烷	µg/kg	AT2 6.6~7.0 (6.7)	ND	ND	494	50	

续上表:

					企測结果		
检测项目	单位	检测点位(m)	现场平 行样 1	现场平 行样 2	允许/相 对偏差 (%)	偏差要 求(%)	是否合格
甲苯	μg/kg	AT2 6.6-7.0 (6.7)	ND	ND	722	50	
1,1,2-三氯乙烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50	
四氯乙烯	μg/kg	AT2 6.6-7.0 (6.7)	ND	ND	3	50	
氣苯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50	****
1,1,1,2-四氯乙烷	μg/kg	AT2 6.6-7.0 (6.7)	ND	ND	100	50	
乙苯	μg/kg	AT2 6.6-7.0 (6.7)	ND	ND	Van	50	
间,对-二甲苯	μg/kg	AT2 6.6-7.0 (6.7)	ND	ND	S 2/500	50	
邻-二甲苯	μg/kg	AT2 6.6-7.0 (6.7)	ND	ND		50	
苯乙烯	µg/kg	AT2 6,6-7.0 (6.7)	ND	ND	1000	50	
1,1,2,2-四氯乙烷	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND		50	-
1,2,3-三氯丙烷	μg/kg	AT2 6.6-7.0 (6.7)	ND	ND	-	50	1
1,4-二氯苯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND	***	50	
1,2-二氯苯	μg/kg	AT2 6.6~7.0 (6.7)	ND	ND	888	50	
183	mg/L	AT2 6.6~7.0 (6.7)	4.2	4.2	0.0	30	合格
報	μg/L	AT2 6.6-7.0 (6.7)	0.3	0.3	0.0	30	合格

备注:1、土壤现场平行双样编差要求根据各检测项目分析方法质量保证和质量控制章节及《重点行业企业 用地调查质量保证与质量控制技术规定(试行)》及 HJ/T 166-2004 表 13-1 确定;

- 2、平行双样均未检出(ND)。则不计算相对偏差:
- 3、"---"表示对该项目不予评价。

第 18 页共 34 页

表 4.10 土壤室内平行样检测结果

	1000	\		90 - 11	检测结果	100	90
检测项目	単位	样品编号	样 1	样 2	允许/相 对偏差 (%)	偏差要 求(%)	是否 合格
рН值	无量纲	TR20230600901103	5,82	5.84	0.02	0.3	合格
水分	%	TR20230600901102	24.4	24.3	0.1	1.5	合格
铅	mg/kg	TR20230600901103	293	254	7.1	20	合格
475	mg/kg	TR20230600901103	0.02	0.02	0.0	35	合格
12	mg/kg	TR20230600901103	13	10	13.0	20	合格
铜	mg/kg	TR20230600901103	2	2	0.0	20	合格
汞	mg/kg	TR20230600901103	0.017	0.020	8.1	35	合格
砷	mg/kg	TR20230600901103	3.85	3.70	2.0	20	合格
六价铬	mg/kg	TR20230600901103	ND	ND	>	20	****
苯胺	mg/kg	TR20230600904202	ND	ND	P	50	
2-氯苯酚	mg/kg	TR20230600904202	ND	ND	-	50	****
硝基苯	mg/kg	TR20230600904202	ND	ND	37773	50	2527
繫	mg/kg	TR20230600904202	ND	ND		50	1
苯并(a)蒽	mg/kg	TR20230600904202	ND	ND	***	50	===
葅	mg/kg	TR20230600904202	ND	ND	\\	50	
苯并(b)荧蒽	mg/kg	TR20230600904202	ND	ND	1777	50	****
苯并(k)炎蔥	mg/kg	TR20230600904202	ND	ND	200	50	
苯井(a)化	mg/kg	TR20230600904202	ND	ND	(2000)	50	
带并(1,2,3-cd)花	mg/kg	TR20230600904202	ND	ND		50	
二苯并(a,h)蒽	mg/kg	TR20230600904202	ND	ND	(277)	50	****
氯甲烷	μg/kg	TR20230600902401	ND	ND	V 120	50	
氯乙烯	μg/kg	TR20230600902401	ND	ND		50	
1.1-二氯乙烯	μg/kg	TR20230600902401	ND	ND		50	****
二氯甲烷	μg/kg	TR20230600902401	ND	ND		50	****
反式-1,2-二氯乙烯	μg/kg	TR20230600902401	ND	ND		50	7777
1,1-二氯乙烷	μg/kg	TR20230600902401	ND	ND		50	
顺式-1,2-二氯乙烯	μg/kg	TR20230600902401	ND	ND	273	50	7777
氮仿	μg/kg	TR20230600902401	ND	ND		50	
1,1,1-三氯乙烷	μg/kg	TR20230600902401	ND	ND		50	1000

第 19 页共 34 页

维上表,

					检测结果		
检测项目	单位	样品编号	样1	样 2	允许/相 对偏差 (%)	偏差要 求(%)	是否合格
四氯化碳	μg/kg	TR20230600902401	ND	ND	-	50	
苯	μg/kg	TR20230600902401	ND	ND		50	
1,2-二氯乙烷	µg/kg	TR20230600902401	ND	ND		50	3 1111
三氮乙烯	μg/kg	TR20230600902401	ND	ND	-	50	
1,2-二氯丙烷	μg/kg	TR20230600902401	ND	ND	3750	50	
甲苯	μg/kg	TR20230600902401	ND	ND	_	50	****
1,1,2-三氯乙烷	μg/kg	TR20230600902401	ND	ND	- J	50	
四氯乙烯	μg/kg	TR20230600902401	ND	ND	_	50	
氯苯	μg/kg	TR20230600902401	ND	ND	200	50	
1,1,1,2-四氯乙烷	μg/kg	TR20230600902401	ND	ND	-	50	7
乙苯	μg/kg	TR20230600902401	ND	ND	-	50	
何,对-二甲苯	µg/kg	TR20230600902401	ND	ND		50	_
邻-二甲苯	μg/kg	TR20230600902401	ND	ND		50	-
苯乙烯	μg/kg	TR20230600902401	ND	ND		50	
1.1,2,2-四氯乙烷	µg/kg	TR20230600902401	ND	ND		50	
1,2,3-三氯丙烷	μg/kg	TR20230600902401	ND	ND		50	
1,4二氯苯	μg/kg	TR20230600902401	ND	ND		50	
1,2-二氯苯	μg/kg	TR20230600902401	ND	ND		50	
報	mg/L	TR20230600901103	2.4	2.7	5.9	30	合档
银	µg/L	TR20230600901103	0.6	0.6	0.0	30	合

各注: 1、土壤室內平行双样偏差要求根据各检测项目分析方法项量保证和质量控制章节及《重点行业企业 用地调查质量保证与质量控制技术规定(试行)》及 HJ/T 166-2004 表 13-1 确定:

- 2、平行双样均未检出(ND),则不计算相对偏差;
- 3、"---"表示对该项目不予评价。

第 20 页共 34 页

表 4.11 土壤室内加标回收率检测结果

	1			档	测结果		
检测项目	单位	样品编号	加标前 浓度	加标后 浓度	加标回收 率(%)	加标回收 丰要求 (%)	是否合格
铅	mg/kg	TR20230600902103	144	273	95.3	80-120	合格
镉	mg/kg	TR20230600902103	0.16	0.41	92.0	85~110	合格
協	mg/kg	TR20230600902103	25	47	94.8	80~120	合格
铜	mg/kg	TR20230600902103	35	99	92.0	80~120	合格
来	mg/kg	TR20230600902103	0.042	0.095	85.2	75~110	合格
砷	mg/kg	TR20230600902103	7.72	16.8	88.0	85~105	合格
六价铬	mg/kg	TR20230600902103	ND	2.0	70.8	70~130	合格
苯胺	mg/kg	TR20230600904102	ND	0.51	83.5	60~140	合格
2-氯苯酚	mg/kg	TR20230600904102	ND	0.52	81.1	60~140	合格
硝基苯	mg/kg	TR20230600904102	ND	0.53	80.2	60~140	合格
禁	mg/kg	TR20230600904102	ND	0.52	78.6	60~140	合格
苯并(a)蒽	mg/kg	TR20230600904102	ND	0.6	91.0	60~140	合格
窟	mg/kg	TR20230600904102	ND	0.5	74.4	60-140	合格
苯并(b)荧蒽	mg/kg	TR20230600904102	ND	0.6	82.7	60-140	合格
栄井(k)荧蔥	mg/kg	TR20230600904102	ND	0.5	74.4	60-140	合格
苯并(a)芘	mg/kg	TR20230600904102	ND	0.5	74.4	60~140	合格
茚井(1,2,3-cd)託	mg/kg	TR20230600904102	ND	0.5	74.4	60-140	合格
二苯并(a,h)蒽	mg/kg	TR20230600904102	ND	0.5	74.4	60~140	合格
氣甲烷	μg/kg	TR20230600903101	ND	48.1	81.2	70~130	合格
氯乙烯	μg/kg	TR20230600903101	ND	50.1	84.6	70~130	合格
1,1-二氯乙烯	µg/kg	TR20230600903101	ND	46.3	78.1	70~130	合札
二氯甲烷	μg/kg	TR20230600903101	ND _	53.8	90.5	70~130	合格
反式-1,2-二氯乙烯	μg/kg	TR20230600903101	ND	47.0	79.0	70~130	合格
1,1-二氯乙烷	μg/kg	TR20230600903101	ND	52.0	87.7	70~130	合格
順式-1,2-二氟乙烯	μg/kg	TR20230600903101	ND	49.3	83.0	70-130	合格
紙仿	μg/kg	TR20230600903101	ND	54.5	92.0	70-130	合格
1,1,1-三氟乙烷	μg/kg	TR20230600903101	ND	54.8	92.4	70~130	合格
四氯化碳	μg/kg	TR20230600903101	ND	54.0	91.0	70~130	合格
1,2-二氯乙烷	μg/kg	TR20230600903101	ND	48.9	82.3	70~130	合格
苯	μg/kg	TR20230600903101	ND	51.5	86.2	70-130	合格

第 21 页 共 34 页

续上表:

				检	测结果		
检测项目	单位	样品编号	加标前 浓度	加标后 浓度	加标回收 率(%)	加标回收 率要求 (%)	是否
三氯乙烯	μg/kg	TR20230600903101	ND	48.7	82.1	70~130	合格
1,2-二氯丙烷	μg/kg	TR20230600903101	ND	48.6	82.0	70~130	合材
甲苯	μg/kg	TR20230600903101	ND	49.1	82.7	70-130	合格
1,1,2-三氯乙烷	μg/kg	TR20230600903101	ND	47.6	80.2	70~130	合格
四氯乙烯	μg/kg	TR20230600903101	ND	49.0	82.4	70~130	合格
紅苯	μg/kg	TR20230600903101	ND	46.9	79.0	70~130	合材
1,1,1,2-四氯乙烷	µg/kg	TR20230600903101	ND	47.9	80.7	70~130	合格
乙苯	μg/kg	TR20230600903101	ND	48.1	81.0	70~130	合格
间,对-二甲苯	µg/kg	TR20230600903101	ND	96.4	81.7	70-130	合格
邻二甲苯	μg/kg	TR20230600903101	ND	47.2	79.5	70~130	合林
苯乙烯	μg/kg	TR20230600903101	ND	47.4	79.9	70~130	合朴
1,1,2,2-四氯乙烷	μg/kg	TR20230600903101	ND	54.7	92.3	70~130	合材
1,2,3-三氯丙烷	μg/kg	TR20230600903101	ND	56.9	96.0	70~130	合材
1,4-二氯苯	μg/kg	TR20230600903101	ND	50.2	84.4	70-130	合柱
1,2-二氯苯	μg/kg	TR20230600903101	ND	51.0	85.7	70-130	合柱
455	mad.	TR20230600902103	4.0	14.8	89.0	80~120	合材
ক্স	mg/L	TR20230600904203	3.4	13.0	94.4	80-120	合柱
報	μg/L	TR20230600902103	0.5	1.3	87.9	80-120	合材

备注: 土壤加标回收率要求根据各检测项目分析方法质量保证和质量控制章节及《重点行业企业用地调查质量保证与质量控制技术规定(试行)》、HJ/T 166-2004 表 13-1 确定。

第 22 页 共 34 页

(信一) 检测 (2023) 第 (06009) 号

表 4.12 土壤质控样统计结果

\$4001203	1 220	N variables out		80.50.5	1 100,000,000	是智
检测项目	单位	标样编号	序号	測定值	标准值	合格
	100	JT2303-0048	1	5.43	5.43±0.21	合權
рН值	无量纲	JT2304-0113	2	7,46	7.46±0.21	合格
The same of the sa		JT2303-0046	3	8.38	8.37±0.11	合格
#8	mg/kg	GBW07452	t	27	28±1	合格
掘	mg/kg	GBW07452	T	0.13	0.15±0.02	合格
锐	mg/kg	GBW07452	1	39	38±1	合格
例	mg/kg	GBW07452	T.	31	32±1	合格
泵		CBW07463	1	0.059	0.058±0.005	合格
ж	mg/kg	GBW07452	2	0.058	0.058±0.005	合格
卸	mg/kg	GBW07452	10	12.4	11.8±0.9	合格
		35.107432	2	12.3	11.8±0.9	合格

1

1

第 23 页 共 34 页

五、质控统计表

表 5.1 地下水样品质控统计表

(第一) 模器 (2023) 第 (06009) 号

北陸軍空白	2.0		10000	10位	实验室加标回收	极				att	宜平行双件	灾粮宜平行双件	灾粮宜平行双件	灾粮食平行及样	100	100		现场下行双件	現场下行双件	現场下行双件
44. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	華景 8 華麗 8	个数	合称果物	加棕回收 半要求 (%)	加程同收 率位图(%)	事品 調整名	今数	你按疑惑		北海葵 6		样品 相对确 允许 比例 差在用 聚妆 (%) (%) (%)	中 4 4 4 4 4 4 4 2 4 2 4 2 4 2 4 2 4 2 4	样品 相对确 允许 比例 差在用 聚妆 (%) (%) (%)	允许 差值 合格 个 样品 相对编 差值 要求 事(%) 数。 (%) (%) (%) (%)	合格 个 样品 相対論 先近 単元(%) 数 (%) (%) (%) (%) (%)	得品 相対 允许 存品 存品 有効機 允许 比別 流池 素肌 合格 个 比例 差面用 整位 (%) (%) (%) (%) (%) (%) (%)	中部 相対 なび 存起 中部 相対	数 - 存出 相号 な字 (*) - 住居	得品 相対 允许 存品 存品 有効機 允许 比別 流池 素肌 合格 个 比例 差面用 整位 (%) (%) (%) (%) (%) (%) (%)
1	<	0	-	*	3	-	-57	-		~	/ 0'0	7 0.0 0.0	merc.	30.0	30.0	30.0	/ / 1 20.0	0.0 / / 1 20.0	33.3 0.0 / / 1 20.0	1 33.3 0.0 / / 1 20.0
10 01	1		-	1	10	1	1	8			1 1	1 1 1	1 1 1	1 1	1 1	1 1 1 1	11111	1 1 1 1 1 1	33.3 / / / / / / /	1 333 / / / / / /
1 1	1	2	-	~	1	1	+	Jo		1	1 1		1	- T	7 10 10	1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	33.3 / / / / / /	1 333 / / / / / /
ND ND	40.0	N	-	~	100	1	10	-		1	4.1 /	-	4.1	20.0 4.1	1 20.0 4.1	(1 200 4.1	/ / 1 20.0 4.1	1.0 / / 1 20.0 4.1	33.3 1.0 / / 1 20.0 4.1	1 333 1.0 / / 1 20.0 4.1
`	~	~	-	*	1	-	~	-		~	/ 00		0.0	20.0 0.0	1 20.0 0.0	/ 1 20.0 0.0	/ / 1 20.0 0.0	2.8 / / 1 20.0 0.0	33,3 2,8 / / 1 20,0 0,0	1 33,3 2.8 / / 1 20,0 0,0
QN QN	400	14	-	-	800	-	-	-	ST	*	23 /	20.0 2.3 /	-	20.0	20.0	/ 1 20.0	/ / 1 20.0	2.4 / / 1 20.0	33.3 2.4 / / 1 20.0	1 33.3 2.4 / / 1 20.0
ND ND	40.0	-	-	100	10	80	1	-		1	1.9		1.9	20.0 1.9	1 20.0 1.9	/ 1 20.0 1.9	7 / 1 20.0 1.9	0,2 / / 1 20,0 1.9	33.3 0.2 / / 1 20.0 1.9	1 333 0.2 / / 1 20.0 1.9
ND ND	40.0	61	-	N.	94.4	20.0	-	-	_	1	0.7	7 00 000	1	20.0	20.0	20.0	/ / 1 20.0	0.0 / / 1 20.0	33.3 0.0 / / 1 20.0	1 333 0.0 / / 1 20.0
ON ON	40.0	77	-	**	98.6	20.0	-			1	0.5		0.5	20.0 0.5	1 20.0 0.5	/ 1 20.0 0.5	7 7 1 20.0 0.5	0.3 / / 1 20.0 0.5	33.3 0.3 / / 1 20.0 0.5	1 333 0,3 / / 1 20,0 0,5
DN DN	40.0	74	100	85-115	90.4	20.0	-	90	_	15	0.0 15		0.0	20.0 0.0	20.0 0.0	/ 1 20.0 0.0	15 / 1 20.0 0.0	/ 15 / 1 20.0 0.0	333 / 15 / 1 20.0 0.0	1 333 / 15 / 1 20,0 0.0
QN QN	40.0	11	100	85-120	93.2	20.0	-	100	-	15		13	6.7 15	20.0 6.7 15	1 20.0 6.7 15	/ 1 20.0 6.7 15	20 / 1 20,0 6.7 15	7 20 / 1 20,0 6,7 15	33.3 / 20 / 1 20.0 6.7 15	1 333 / 20 / 1 20,0 6.7 15
ND ND	100	*	-	-	17/1/1	-	-	-	_											

(5) 株品 (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)	2 40.6 ND ND 100 333 133 134	19 19 19 19 19 19 19 19	株型 加味的校 株型 株型 株型 株型 株型 株型 株型 株		1	1	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	200	本の本工・1 ACF 特益 相対偏 を行った 特益 加水回収 付金 特益 加水回収 付金 特益 指数			11 1 1 1 1 1 1 1 1	Accept 17 ACCF	本品 17 ACT	A
(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	(%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	######################################	(1-2) [1-2] [1-	1.54 1.27 1.52 1.54 1.57 1.53 1.54 1.57 1.53 1.54	年 1 - 14 - 12-17 年 2 - 12-17 年 12-17 4 - 12-	要決 単 1 M Ling 年記[Head 1 T.S.Y. 井 敷 Ling Mark Rath 春 (54) (75) (75) (75) (75) (75) (75) (75) (75	(54) (74) (75) (75) (75) (75) (75) (75) (75) (75	15.00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	数 t.c. 25.0cm 要求 早 1-24 t.b. 1-27 非原用である。 1.5. 1 は 1.5.	帯で4)数 1-20 (24) (25) (26) (26) (26) (26) (26) (26) (26) (26	製造 帯でん 数 1.45 2.54 (で)	説詞 製泉 帯でん 数 しゅう Zauri 要求 事 しか にかり 非直角でも (55) (55) (55) (55) (55) (55) (55) (55	15.0 [25] 第1.0 [25] 第1.0 [25] [25] [25] [25] [25] [25] [25] [25]	数 the bar all all all all all all all all all a	数 1405 超角 聚香 平(24) 数 1457 至 2514
2 46.0 ND ND 100 2 46.0 ND ND 100 2 46.6 ND ND 100	/ 2 40.0 ND ND 100 / 2 40.0 ND ND 100 / 2 40.0 ND 100 / 2 40.0 ND 100	7 2 40.0 ND 100	2 40.0 ND 100 100 100 100 100 100 100 100 100 10	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 9 100 100 100 100 100 100 100 100 100 1	7 1 1 1 1 1 1 1 1 2 40.8 ND ND 100	7 7 7 7 7 7 7 7 7 9 100	200 / / / / / / / / / / / / / / / / / /	1 200 / / / / / / 2 400 ND 100	/ 1 200 / / / / / / / / / / / / / / / / / /	/ / 1 200 / / / / / / / / / / / / / / / / / /	1 1 200 1 1 1 1 1 1 1 1 1 2 40,0 ND ND 100	33.3 / / / 1 200 / / / / / / / / / / / / / / / / / /	1 333 / / / 1 200 / / / / / / / / / / / / / / / / / /	(20) (20)
2 40.0 ND ND 100 1 2 40.0 ND ND 100 1	/ 2 40.0 ND ND 100 1 / 2 40.0 ND ND 100 1 / 2 40.0 ND ND 100 1	7 40.9 ND ND 100 1.	7 7 7 40.0 ND ND 100 1. 1 2 40.0 ND ND 100 1. 1 1 2 40.0 ND ND 100 1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 7 7 7 40.9 ND ND 100 1.	/ / / / / / / 2 40.0 ND ND 100 1.	1 1 1 1 1 1 2 40.0 ND 100 1	1 1 1 1 1 1 1 1 1 1 2 400 ND 100 1	20.0 1 7 7 7 7 7 7 7 8 40.0 ND 100 1	3						33.3 / / / 1 20.0 / / / / / / / / / / / / / / / / / /
2 40.6 ND ND 100 I	/ 2 40.6 ND ND 100 I	1 2 400 ND ND 100 1	1 2 40.0 ND ND 100 1	1 1 1 1 2 40.0 ND ND 100 1	/ / / / / / / / 2 40.6 ND ND 100 1				1 20.0 f 2 7 f f f f f f f f f f 7 7 7 7 8 40.0 ND 100 1	/ 1 200 / / / / / / / / 2 400 ND ND 100 I	/ / 1 200 / / / / / / / / / / 2 400 ND 100 1	7 1 200 7 7 7 7 7 7 7 7 7 7 8 90 100 11	33.3 1 1 1 20.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 333 / / / 1 200 / / / / / / / / / / / / / / / / / 1 200 1	33.3 (
	/ 2 40.0 ND ND 100 1	1 001 CN CN 00F C	- SOL CA COS C		The second secon	7 / 7 ND ND 100 I	5.6 / / / / / 2 40.9 ND ND 100 I	20.0 S.6 J J J J J J J J 2 40.6 ND ND 100 1	1 200 5.6 J / / / / / / / / 1 1 1 1 2 40.6 ND ND 100 1	1 1 200 3.6 1 1 1 1 1 1 1 2 40.0 ND ND 100 1	7 1 1 200 5.6 7 7 7 7 7 7 7 2 40.6 ND ND 100 1	26 7 7 1 200 5.6 7 7 7 7 7 7 7 7 7 8 40.0 ND ND 100 1	33.3 2.6 7 7 1 200 8.6 7 7 7 7 7 7 7 2 40.6 ND ND 100 1	1 333 26 7 7 1 200 5.6 7 7 7 7 7 7 7 7 7 8 40.6 ND ND 100 1	33.3 2.6 7 7 1 200 8.6 7 7 7 7 7 7 7 2 40.6 ND ND 100 1
40.0 ND ND 100 1	The state of the s	1 MI ON ON THE	4 WEN IND IND 100 1	7 46.0 ND ND 100 I	1 1 1 1 1 2 40.0 ND ND 100 1	/ / / / / Z 40.0 ND ND 100 1	0.1 / / / / / / / / / / / 2 40.6 ND ND 100 1	20.0 0.1 / / / / / / / / / / / / / / 2 40.0 ND 100 1	0.1 / / / / / / / / / / / 2 40.6 ND ND 100 1	/ 1 200 0.1 / / / / / 2 40.0 ND ND 100 1	7 1 1 200 0.1 7 7 7 7 7 7 7 7 7 8 100 100 1	3 2.8 / / 1 20.0 0.1 / / / / / / / 2 40.0 ND ND 100 1	33.3 2.8 / / / 1 20.0 0.1 / / / / / / / / 2 40.0 ND ND 100 1	1 333 28 7 7 1 200 0.1 7 7 7 7 7 7 7 7 8 100 100 1	33.3 2.8 / / / 1 20.0 0.1 / / / / / / / / 2 40.0 ND ND 100 1
/ 2 40.0 ND ND 100 1 33.3	40.0 ND ND 100 1	/ 2 40.0 ND ND 100 1	/ 2 40.0 ND ND 100 1	7 / / / / 1 2 40.0 ND ND 100 1	100 7 7 7 7 7 40.0 ND ND 100 1	30 100 / / / / 2 40.0 ND ND 100 1	0.0 30 100 7 7 7 7 7 40.0 ND ND 100 1	20.0 0.0 30 100 / / / / / 2 40.0 ND 100 1	1 20.0 0.0 30 100 7 7 7 7 7 2 40.0 ND ND 100 1	100 1 20,0 0.0 30 100 7 7 7 7 7 40.0 ND ND 100 1	30 100 1 20,0 0.0 30 100 7 / / / 2 40,0 ND ND 100 1	0.0 30 100 1 20.0 0.0 30 100 7 / / / 2 40.0 ND ND 100 1	33.3 0.0 30 100 1 20.0 0.0 30 100 7 7 7 7 7 2 40.0 ND 100 1	1 333 0.0 30 100 1 20.0 0.0 30 100 7 7 7 7 7 2 40.0 ND 100 1	33.3 0.0 30 100 1 20.0 0.0 30 100 7 7 7 7 7 2 40.0 ND 100 1
/ 2 40.0 ND ND 100 I 33.3	400 ND ND 100 1	/ 2 40.0 ND ND 100 I	/ / 2 40.0 ND ND 100 I	/ / / / / 2 40.0 ND ND 100 I	100 / / / / 2 40.0 ND ND 100 I	10 100 / / / / 2 40.0 ND ND 100 I	0.0 10 100 / / / / 2 40.0 ND ND 100 I	200 0.0 10 100 / / / / 2 40.0 ND ND 100 1	1 200 0.0 10 100 / / / / 2 40.0 ND ND 100 1	100 1 200 0.0 10 100 / / / / 2 40.0 ND ND 100 1	10 100 1 200 0.0 10 100 / / / / 2 40.0 ND ND 100 1	0.3 10 100 1 20.0 0.0 10 100 / / / / 2 40.0 ND ND 100 1	33.3 0.3 10 100 1 20.0 0.0 10 100 / / / 2 40.0 ND ND 100 1	1 333 03 10 100 1 200 00 10 100 / / / 2 40.0 ND ND 100 1	33.3 0.3 10 100 1 20.0 0.0 10 100 / / / 2 40.0 ND ND 100 1
/ 2 40.0 ND ND 100 I 33.3	1 001 QN QN 00h	/ 2 40.0 ND ND 100 I	/ / / 2 40.0 ND ND 100 I	1 00 ND ND 100 I	1 100 IND ND 100 I	7 7 7 7 7 7 7 2 400 ND ND 100 1	0.0 7 7 7 7 7 7 7 7 7 8 40.0 ND 100 1	200 0.0 / / / / / / / 2 40.0 ND ND 100 I	0.0 7 7 7 7 7 7 7 7 7 8 40.0 ND 100 1	7 1 200 0.0 7 7 7 7 7 7 7 7 1 2 40.0 ND 100 1	1 7 1 200 6.0 7 7 7 7 7 7 7 7 8 40.0 ND 100 1	3.7 / / 1 20.0 0.0 / / / / / / / / / / / / / / / /	33.3 3.7 / / 1 20.0 6.0 / / / / / / / / / 2 40.0 ND ND 100 1	1 333 3.7 / / 1 200 0.0 / / / / / / / / / / / / / / / / /	33.3 3.7 / / 1 20.0 6.0 / / / / / / / / / 2 40.0 ND ND 100 1
7 2 40.0 ND ND 100 I 33.3	2 40.0 ND ND 100 I	7 2 40.0 ND ND 100 I	/ / 2 40.0 ND ND 100 I	/ / / / / / / 00 ND ND 190 I	7 7 7 7 7 2 40.0 ND 100 1	1 1 1 1 1 1 1 2 400 ND ND 100 1	0.0 1 7 7 7 7 7 2 40.0 ND ND 100 1	200 0.0 7 7 7 7 7 7 7 1 100 ID ND 100 I	0 00 1 7 7 7 7 7 2 40.0 ND ND 100 1	7 1 200 0.0 7 7 7 7 7 7 7 7 1 2 40.0 ND ND 100 1	7 7 1 200 0.0 7 7 7 7 7 7 7 7 100 ND ND 100 1	0.0 1 1 1 20.0 0.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	33.3 0.0 7 7 1 20.0 0.0 7 7 7 7 7 7 7 7 7 2 40.0 ND ND 100 1	1 333 0.0 / / 1 20.0 0.0 / / / / / / / / / / / / / / / /	33.3 0.0 7 7 1 20.0 0.0 7 7 7 7 7 7 7 7 7 2 40.0 ND ND 100 1
/ 2 40.0 ND ND 100 I 33.3 ND	40.0 ND ND 100 1 33.3	/ 2 40.0 ND ND 100 1 33.3	/ 2 40.0 ND ND 100 1 33.3	/ / 2 46.0 ND ND 100 1 33.3	/ / / / / / 333	/ / / / 2 46.6 ND ND 100 1 33.3	7 20 7 7 7 7 7 7 7 33.3	200 / 20 / / / / / / 33.3	7 20 7 7 7 7 7 7 7 33.3	/ 1 200 / 20 / / / / / / / 2 400 ND ND 100 1 333	20 / 1 20.0 / 20 / / / / / / / 33.3	7 20 1 1 200 1 20 7 7 7 7 7 7 7 2 40.0 ND ND 100 1 33.3	33.3 / 20 / 1 20.0 / 20 / / / / / / / / 2 40.0 ND ND 100 1 33.3	1 333 1 20 1 1 200 1 20 1 1 1 1 1 1 1 1 1 1 1	33.3 / 20 / 1 20.0 / 20 / / / / / / / 33.3 ND ND 100 1 33.3
															The state of the s
CN CN SYS I WILL CALL CONTROL	/ 2 40.0	100 I 33.3 ND ND	/ / 2 40.0 ND ND 1000 1 33.3 ND ND	/ / 2 40.0 ND 10.0 I 33.3 ND ND	7 7 7 7 7 7 8 40.0 ND ND 100 1 33.3 ND ND	/ / / / / / / / / / / / / / / / / / /	1.5 / / / / / / / / / / / / / / / / / / /	20.0 1.5 / / / / / / / / / / / / / / / 2 40.0 ND ND 100 I 33.3 ND ND	20.0 1.5 / / / / / / / / 2 40.0 ND ND 1000 I 33.3 ND ND	1 200 L3	1 200 13	67 1 1 200 13 1 1 1 1 200 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	333 67 7 7 1 200 15 7 7 7 7 7 7 7 8 400 ND ND 100 1 333 ND ND	1 333 67 / / 1 200 13 / / / / / / / / / / / / / / / / / /	33.3 6.7 / / 1 20.0 1.5 / / / / / / / / / / / / / / / / / / /
and the same															
2 400 ND 2 400 ND 2 400 ND 2 400 ND 2 400 ND 2 400 ND	/ 2 40.0 ND / 2 40.0 ND / 2 40.0 ND / 2 40.0 ND	7 2 400 ND	2 400 ND	7 400 ND 7 7 400 ND 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	100 1 1 1 2 400 ND 100 1 1 1 1 2 400 ND 1 1 1 1 1 1 2 400 ND 1 1 1 1 1 1 1 2 400 ND 1 1 1 1 1 1 1 2 400 ND	30 100 / / / / / / / / / / 2 40.0 ND 10 100 / / / / / / / / / / 2 40.0 ND // / / / / / / / / / / / / / / / / / /	0.0 30 100 7 7 7 7 7 7 40.0 ND 0.0 10 100 7 7 7 7 7 7 40.0 ND 0.0 1 7 7 7 7 7 7 7 40.0 ND 0.0 7 7 7 7 7 7 7 7 7 40.0 ND 0.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	20.0 0.0 1 1 1 1 1 1 1 1 1 2 40.0 ND 20.0 0.0 10 100 7 7 7 7 7 7 40.0 ND 20.0 0.0 1 1 100 7 7 7 7 7 7 40.0 ND 20.0 0.0 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8	1 200 0.1	100 1 200 0.0 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 100 1 100 1 200 0.0 10 100 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	30 100 1 200 0.1 1 7 7 7 7 7 8 9 100 1 1 1 200 0.0 1 1 1 200 0.0 1 1 1 200 0.0 1 1 1 200 0.0 1 1 1 200 0.0 1 1 1 200 0.0 1 1 1 200 0.0 1 1 1 1 200 0.0 1 1 1 1 1 200 0.0 1 1 1 1 1 200 0.0 1 1 1 1 1 1 200 0.0 1 1 1 1 1 1 200 0.0 1 1 1 1 1 1 200 0.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.8 1 1 200 0.0 1 1 1 1 1 1 1 1 1	33.3 2.8 7 7 1 20.0 0.1 7 7 7 7 7 7 7 7 7 7 7 7 7 8 9 10 10 10 1 20.0 0.1 7 7 7 7 7 7 7 8 10 10 10 1 20.0 0.1 10 10 1 10 10 1 1 20.0 0.0 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1	1 13.3 2.8 7 7 1 20.0 0.1 7 7 7 7 7 7 7 7 7	3 333 2.8
N N N N N N	N R R R N	3 5 5 5 5	3 3 3 3 5		100 1 1 1 1 1 1 1 2 100 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 1 1 1 1 1 2	30 100 7 7 7 7 7 7 2 10 100 7 7 7 7 7 7 2 7 7 7 7 7 7 7 7 2 20 7 7 7 7 7 7 7 7 2	0.1	20.0 0.1 f <td>1 200 0.0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 0 100 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 0 100 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2</td> <td> 1 200 0.1 7 7 7 7 7 7 7 7 7 </td> <td> 1 1 20.0 0.1 1 1 1 1 1 1 1 1 2 2</td> <td>2.8 f f 1 200 0.1 f<!--</td--><td>333 2.8 7<td>1 333 2.8 7<td>3 1 333 2.8 7 7 1 200 0.1 7</td></td></td></td>	1 200 0.0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3 0 100 1 1 1 1 1 1 1 1 1 2 2 2 2 2 3 0 100 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2	1 200 0.1 7 7 7 7 7 7 7 7 7	1 1 20.0 0.1 1 1 1 1 1 1 1 1 2 2	2.8 f f 1 200 0.1 f </td <td>333 2.8 7<td>1 333 2.8 7<td>3 1 333 2.8 7 7 1 200 0.1 7</td></td></td>	333 2.8 7 <td>1 333 2.8 7<td>3 1 333 2.8 7 7 1 200 0.1 7</td></td>	1 333 2.8 7 <td>3 1 333 2.8 7 7 1 200 0.1 7</td>	3 1 333 2.8 7 7 1 200 0.1 7
	7				100000000000000000000000000000000000000	30 100 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.0 30 100 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	20.0 0.1 / / / / / / / / / / / / / / / / / / /	1 20.0 0.1 / / / / / / / / / / / / / / / / / / /	100 1 20.0 0.1 / / / / / / / / / / / / / / / / / / /	30 100 1 200 0.1 / / / / / / / / / / / / / / / / / / /	2.8	33.3 2.8 7 7 1 20.0 0.1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 333 2.8	3 1 333 2.8 7 1 200 0.1 7 7 7 7 3 1 333 0.0 30 100 1 200 0.0 10 100 7 7 3 1 333 0.3 10 100 1 200 0.0 7 7 7 7 3 1 333 0.0 7 7 7 7 7 7 7 7 3 1 333 0.0 7 7 7 7 7 7 7 7 4 1 300 7 7 7 7 7 7 7 7 7

(信一) 位别 (2023) 第 (06009) 号

			,
7	١	2	
	ť	3	١
		1	
	é	8	
ú	6	٠	٠

头验室加标间收	****			五年	大物質平行政権	1980	発		200		*	FERRIF	现场平台双件	现场平沿双桥	現	現	-
4 个数 样品比 加环回收 加环回收 合格	F 品设 例%)	Ŧ	Alle Carlo	合金の		相関数の30分割が20分割が20分割が20分割が20分割が20分割が20分割が20分割が2	相関数の30分割が20分割が20分割が20分割が20分割が20分割が20分割が20分割が2	相関数の30分割が20分割が20分割が20分割が20分割が20分割が20分割が20分割が2	相関数の30分割が20分割が20分割が20分割が20分割が20分割が20分割が20分割が2	相関数の30分割が20分割が20分割が20分割が20分割が20分割が20分割が20分割が2	相関数の30分割が20分割が20分割が20分割が20分割が20分割が20分割が20分割が2	和文学 日本	相对偏允许忍 合格 个 附品比 隔差 編記 总范围帽要束率(%) 数 (物%) 范围 原北 (%) (%) (%)	相对偏允许忍 合格 个 附品比 隔差 編記 总范围帽要束率(%) 数 (物%) 范围 原北 (%) (%) (%)	将品 和均輪 允许道 合格 个 評品化 開放 相対 ・	片体 数 个数 比例 必流間加速和平(%) 数 (機%) 液固 退水 (や) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	将品 和均輪 允许道 合格 个 評品化 開放 相対 ・
97.0 60-130	1 16.7	_		1	1 06	30 /	/ 30 /	/ 06 / 291	1 167 / 30 /	/ 1 167 / 30 /	30 / 1 167 / 30 /	1 1	/ 30 / 1	1 1	/ 30 / 1	/ 30 / 1	/ 30 / 1
82.9 60-130	1 16.7	-		1	30	30	/ 30 /	16.7 / 30 /	1 16.7 / 30 /	/ 1 167 / 30 /	30 / 1 16.7 / 30 /	1 1	/ 30 / 1	1 1	/ 30 / 1	/ 30 / 1	/ 30 / 1
83.0 60-130	1 16.7	-		1	/ 08	30 /	/ 30 /	/ 08 / 291	10	10	10	/ 1 191 /	/ 30 / 1 167 /	/ 1 191 /	/ 30 / 1 167 /	/ 30 / 1 167 /	/ 30 / 1 167 /
92.8 60-130 100 1 16.7 ND ND	1 16.7	-		7	/ 06	30 /	/ 30 /	/ 06 / 291	1	1	/ 1 167 /	-	/ 30 / 1 167 /	/ 1 16.7 /	/ 30 / 1 167 /	/ 30 / 1 167 /	1 671 1 1 06 /

(信一) 換線 (2023) 第 (06009) 号

	18	683	100	100	100		100	90	8	100	100	188	-	~	-
	无量纲)	左米 (mg/kg)	\$22-5.64	725-7.67	8.26-8.48	1	27-29	0.13-0.17	37-39	31-33	0.053-0.063	10.9-12.7	1	1	1
	标准件 (pH价):	结果花园 (mg/kg)	5.43	7.46	8.38	1	27	0.13	39	31	0.058-0.059	123-124	1	1	1
	100	祖 英 名	Ž.	30.0			10.0	001	10.0	10.0	20.0	20.0	1	-	1
		- 機		m	ĺ	*	-	170	-	-	61	ri.	,	~	,
		を表し		+	Î	32	901	100	100	100	100	100	100	100	100
	d'A	数	N.	1	8	,	Q	Q.	QN	g	9	£	2	£	S
	实验事管白	報		1		1	QN	P	Q	Ð	Q	g	Q	Q	GN
	-2%	15 E E E		2		-	20.0	20.0	20.0	20.0	20.0	200	20.0	200	20.0
		今数		-		-	N	14	N	ei	61	rı	10	ei.	2
İ		介格率 (%)		20		-	001	8	100	100	100	901	001	92	100
	回仗	加斯四松 東原米 (%)		16			80~120	85-110	80-120	80-120	75-110	85-105	70-130	80-120	80-120
	实验室加标回收	加棒回收 率范围(%)		1		,	95,3	92.0	94.8	92.0	85.2	88.0	70.8	89 0-94 4	87.9
	177	FE 90		3			10.0	10.0	0.01	10.0	0.01	0.01	10.0	20.0	10.0
		4		-	9	-	-	-	-	-	-	-	-	rı	-
Ì		存(%)	8	100		100	100	001	901	100	100	100	10	100	100
2	AH)	相对编 整贯决 (%)	20000	0.3		5	20	33	20	20	35	30	20	30	30
	实验电平行双件	相对确定 范围(%)	1000000	0.02		0.1	7.1	0.0	13.0	0.0	1.8	2.0		5.9	0.0
1	:36	開発の	Š	10.0		10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
		かな	Ü	-		-	-	-	-	-	-	-	die.	-	-
1		衛子 (5)	3	100		100	100	100	901	100	100	100	1	801	81
	85	北京 東京 (25)	98887	0.3		1.5	20	35	30	20	35	30	20	30	30
	现场下行双件	相对的 经记用 (%)	Lynna .	0.14		0.5	\$.1	FII	9.1	5.9	0.0	13	1	0.0	0.0
	N.	대출 원	9000	Ξ		Ξ	11.1	Ξ	Ш	11	11.1	Ξ	11.1	11.1	111
		台	93	-		-	-	1	-	-	-	-	-	-	1
1	1	EE (↑)	080	6		6	6	6	9	6	6	6	6	6	6
		がそ	000	10		10	10	01	10	10	01	10	10	10	10
	A see	2 E	No.	pHff		水分	\$	舞	55	₽	採	1	六价格	#	13

续上表:

7	条 合格集	001 0		001 C	001 C	001	001 0	001 0	001 0	001 C	001 C	901	001 0	001 0	001	001 C	001 0	001 0	001 C	001 0	001 C	001
全型产业自	2000年	QN QN	ND ND	ON ON	ON ON	QN QN	QN QN	ON ON	QN QN	GN GN	QN QN	QN Q	ND ND	QN QN	QN QN	GN GN	QN QN	QN Q	D ND	Q Q	Q Q	QN QN
全色	开品比(结)	1	-	-		-	-		1	-		QN -			_		-	- ND	- Q	2	- N	_
		Ξ	Ξ	Ξ	=	=	=	Ξ	Ξ	=	Ξ	Ξ	Ξ	121	Ξ	=	3	=	Ξ	=	=	Ξ
757-	4 4 (%) (%)	- 0	0	-	-	- 0	-	0	0	- 0	- 0	0	0	0	1 0	- 0	0	-	- 0	0	1 00	- 0
	4年	001	001	001	001	001	001	001	001	001	001	001	100	001	001	001	001	001	001	001	_	001
日本	光路	QN C	QN C	N C	S C	QN C	QZ O	QN C	QN	QN C	QN C	Q C	Q N	ON C	ON C	ON O	Q C	2	ON C	ON O	Q.	Q.
四級學位	42	I ND	ON I	Q.	8	ON I	S .	S.	8	N N	QN .	S.	8	8	2	8	S.	8	8	- Q	S	Q.
	品表 (2)	Ξ	Ξ	Ξ	=	Ξ	11.1	7	E	Ξ	=	=	Ξ	Ξ	11.1	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ
	- 教	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=
	(%) (%)	100	100	100	180	8	91	8	100	8	8	801	100	100	100	100	100	100	100	100	100	100
50	製	QN	GN	Q.	Q	g	Q.	g	QN	g	gN	Q	ND	QN	QN	Q	Q.	QN.	ND	Q.	g	9
实验案整合	紫	9	QN	g	9	S	Q	£	Q.	Q	Q	£	Q	Q	9	g	2	9	£	9	g	Q
*	369	8.3	8.3	5.3	8.3	28	2	2	8.3	53	8.3	8.3	8.3	8.3	2	2	2	28	8.3	23	8.3	23
	**	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	衛井の	100	100	8	100	9	8	8	100	8	100	100	100	100	901	901	100	100	90	100	99	100
版	加环回收 半要和%)	70-130	70-130	70-130	70-130	70-130	70-130	70-130	70-130	70-130	70~130	70-130	70-130	70-130	70~130	70-130	70-130	70-130	70~130	70-130	70~130	70-130
义验完加格回数	(2015)	81.2	84.6	78.1	90.5	79.0	1.78	83.0	92.0	92.4	91.0	82.3	86.2	82.1	82.0	82.7	80.2	82.4	79.0	80.7	81.0	81.7
75	作品 比例 (%)	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	50	F7 00	8.3
	- 2	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	_	-	-	-	-	-
	会 (%)	,	-	300	-		-	-		-		-	-	1			~	-	1		1	,
314	20 金融 20 30 30 30 30 30 30 30 30 30 30 30 30 30	20	20	8	98	20	98	99	20	99	90	90	20	90	90	50	20	90	20	90	50	20
完粉氧学行双件	和对值 次范围 (%)	,	1	1	1	1	1	,	1	1	,	-	1	1	'	1		1	1	1	,	1
が記	作品 に対 (%)	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	83	23	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3	8.3
	个数	-	-	-	-	-	-	-	-	-	-		-	-	-	=	-	=	=		-	-
	心情 (%)	1	1	1	1	~	~	~	1	1	,	,	1	1	1	-	-	1	1	1	4	1
112	允许整 低器块 (%)	20	20	90	90	90	90	90	50	90	90	90	50	90	90	50	90	90	50	90	20	90
现场平行双样		1	1	1	,	1	2	-	10	1	,	-	1	1	1	,	1	1	1	1	1	1
IES.	FF品 相对的 比例 22范围 (%) (%)	11.1	11.1	=	=	111	Ξ	11	133	=	Ξ	=	113	Ξ	=	111	113	=	=	3	=	Ξ
	今数	1	-	-	-	-	-	-	-	-	_	-	-	1	-	-	-	-	-	1	-	-
100	1 ≅€	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6
_		12	12	12	13	12	13	12	300	12	12	27	12	12	12		13	12	12	12	12	22
3	発展の日間の	加拉二	-	第二:1.1	2.5	反式-1,2-	1000000	施式-1.2-	氯价 12	1.1.1.章	100	12二集			12.7.第	中紫 12	1,12,三 [四氯乙烯二	第 本 正	11.1.2-14 1. 第乙烷	1	1 大学 1 上 2 日 2 日 3 日 3 日 3 日 3 日 3 日 3 日 3 日 3 日

				現场	务平行双件	3.45			語が	法验室平行及样	双样			413	次發棄加蔣回收	明你			18	安徽和安山	D.			-	阿撒尔伯	ū			-300	全間が空白	550	
分析 過日 過日	特徴の	性質の	4	記を記	日对偏化许差 分花园在安米中 (%) (%)	25 20 20 20 20 20 20 20 20 20 20 20 20 20	会なる	一一級	温素を	を を を を を を を を を を を を を を を を を を を	相倫理 対策米 G	告年30	女	電車 35	加格坦秋平 近国%3)	加标回收 市提出(%)	佐をの	## /	古五 30	223	数	合格率 (%)	- 25	は 単の の で で で で で で で で で で で で で で で で で	経	聚	40%)	个型	开品比 例(%)	禁想	提米	仓格率 (%)
おいま	12	6	-	11.3	8	50	-	7	3	11	20	-	=	8.3	79.5	70~130	001	-	6.3	Q	Q	100	1	11.1	Q.	S	80	-	III	QN	QN	100
茶乙烯	22	6	-	11.1	1	20	1	-	83	7	95	1	-	8.3	6.61	70-130	100	-	8.3	Q	Q	100	-	11.1	2	8	100	-	Ξ	Q	ND	100
1,2,2-四 類乙烷	13	6	-	11.3	-	20	1	-	2	77	95	10	-	2	92.3	70-130	100	-	8.3	Q	9	100	1	11.1	2	2	00	7	11.1	Q.	QN	100
1,2,3-三 氣四旋	21	6	10	11.1	W.	99	+	-	83	Ny.	20	10		8.3	0.96	70-130	100	-	8.3	g	Ð	100	-	Ξ	N N	Đ.	100	-	Ξ	N N	ND	100
五十二年	22	0.	-	111		90		-	2	-	8	4	870	8.3	84.4	70-130	100	-	8.3	Ð	Ð	100	-	Ξ	9	S.	100	100	Ξ	Q.	g	100
1,2-1,51	21	0	-	11.1	-	20	*	-	8.3	2	20	4	-	8.3	85.7	70~130	100	-	8.3	Q.	Đ.	100	-	17	Š	£	100	-	Ξ	₽ Q	QN.	100

*100-4次稳宜空自样品比例计算;实验室空自作品个数件品总数*100。5次稳度干行双排样品比例计算;实验室平行双件个数件品总数*100。6.实验室加禄国收率样品比例计算;实验室加

标同收率个数符品总数*190.7.重控排桿品比例计算。质拉样个数/详品总数*100.8.现场平行桿品比例计算,现场平行祥品个数/样品数*100.

(后一) 機構(2023) 第(06009) 号

附表 1 地下水检测项目及检测信息一览表

检测项目	分析方法	分析仪器	检出限
pH值(现场测定)	水质 pH 值的测定 电极法 HJ 1147-2020	SX825 型 pH/mV/溶解 氧测量仪	
速度	水质 浊度的测定 浊度计法 HJ 1075-2019	WZB-175 便携式油度计	0.3NTU
色度	地下水质分析方法 第 4 部分; 色度的测定 铂-钴标准比色法 DZ/T 0064.4-2021	***	5度
臭和味	生活饮用水标准检验方法 感观性状和物理指标 GB/T 5750.4-2006 (3)	-	
肉眼可见物	生活饮用水标准检验方法 感观性状和物理指标 GB/T 5750.4-2006 (4)		8-89-115 779
总硬度	水质 钙和镁总量的测定 EDTA 滴定法 GB/T 7477-1987	50mL 滴定管	5mg/L
溶解性总固体	生活饮用水标准检验方法 感观性状和物理指标 GB/T 5750.4-2006 (8)	BSA224S 电子天平	<u>14</u> 5
硫酸盐	水质 硫酸盐的测定 铬酸钡分光光度法(试 行) HJ/T 342-2007	722S 可见分光光度计	8.0mg/L
無化物	水质 氟化物的测定 硝酸银滴定法 GB/T 11896-1989	50mL 滴定管	10mg/L
铁	水质 铁、锰的测定 火焰原子吸收分光光度法	TAS-990F 原子吸收分	0.03mg/L
锰	GB/T 11911-1989	光光度计	0.01mg/L
朝	水质 铜、锌、铝、锡的测定 原子吸收分光光	TAS-990F 原子吸收分	0.05mg/L
锋	度法 GB/T 7475-1987	光光度计	0.05mg/L
帽	生活饮用水标准检验方法 金属指标 GB/T 5750.6-2006 (1)	722S 可见分光光度计	0.008mg/L
挥发酚	水质 挥发酚的制定 4-氨基安替比林分光光 度法 HJ 503-2009	722S 可见分光光度计	0.0003mg/L
阴离子表面活性剂	水质 阴离子表面活性剂的测定 亚甲蓝分光 光度法 GB/T 7494-1987	T6 新世纪紫外可见分 光光度计	0.05mg/L
耗氧量	水质 高锰酸盐指数的测定 GB/T 11892-1989	50mL 滴定管	0.5mg/L
数数	水质 氨氮的测定 纳氏试剂分光光度法 HJ 535-2009	722S 可见分光光度计	0.025mg/L
硫化物	水质 硫化物的测定 亚甲基蓝分光光度法 HJ 1226-2021	722S 可见分光光度计	0.01mg/L
	The state of the s		

1

第 31 页 共 34 页

续上表:

检测项目	分析方法	分析仪器	检出限
钠	水质可溶性阳离子 (Li [*] 、Na [*] 、NH. [*] 、K [*] 、 Ca ²⁺ 、Mg ²⁺) 的測定离子色谱法 HJ 812-2016	CIC-D120 离子色谱仪	0.02mg/L
业硝酸盐氮	水质 亚硝酸盐氮的测定 分光光度法 GB/T 7493-1987	722S 可见分光光度计	0.003mg/L
硝酸盐氮	水质 硝酸盐氯的湖定 酚二磺酸分光光度法 GB/T 7480-1987	722S 可见分光光度计	0.02mg/L
氰化物	地下水质分析方法第 52 部分: 氰化物的测定 吡啶-吡唑啉酮分光光度法 DZ/T 0064.52-2021	722S 可见分光光度计	0.002mg/L
氧化物	水质 氟化物的测定 氟试剂分光光度法 HJ 488-2009	722S 可见分光光度计	0.02mg/L
碘化物	水质 碘化物的测定 离子色谱法 HJ 778-2015	CIC-D120 离子色谱仪	0.002mg/L
汞			0.04μg/L
静	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014	AFS-8520 原子荧光光 度计	0.3µg/L
硒			0.4μg/L
幅	(水和废水监测分析方法)(第四版增补版) 国家环境保护总局 2002 年 石墨炉原子吸收 法测定锅、锅和铅(B) 3.4.7(4)	AA-6880F/AAC 原子吸 教分光光度计	0.1µg/L
六价铬	地下水质分析方法 第 17 部分;总辖和六价 铬量的测定 二苯碳酰二肼分光光度法 DZT 0064,17-2021	722S 可见分光光度计	0.004mg/1
铂	《水和废水监测分析方法》(第四版增补版) 国家环境保护总局 2002 年 石墨炉原子吸收 法(B) 3.4.16(5)	AA-6880F/AAC 原子吸收分光光度计	1μg/L
三氯甲烷	000000000000000000000000000000000000000		1.4µg/L
四氧化碳	水质 挥发性有机物的测定 吹扫捕集/气相色	8890-5977B	1.5μg/L
苯	谱-质谱法 HJ 639-2012	气相色谱质谱联用仪	1.4µg/L
甲苯			1.4µg/L

第 32 页 共 34 页

附表 2 土壤检测项目及检测信息一览表

检测项目	分析方法	分析仪器	检出限
pH 值	上壤 pH 值的测定 电位法 HJ 962-2018	PXSJ-216F 离子计	312.6
水分	土壤 干物质和水分的测定 重量法 HJ 613-2011	YP502N 电子天平	***
镉	土壤质量 铅、镉的测定石器炉原子吸收分 光光度法 GB/T 17141-1997	AA-6880F/AAC 原子吸 收分光光度计	0.01mg/kg
铅	C-11	-10	10mg/kg
锦	土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原子吸收分光光度法 HJ 491-2019	TAS-990F 原子吸收分光 光度计	3mg/kg
铜	775	5	Img/kg
缎	士壤质量 总汞、总砷、总铅的测定 原子 荧光法 第 1 部分: 土壤中总汞的测定 GB/T 22105.1-2008	AFS-8520 原子荧光光度 计	0.002mg/kį
õþ	土壤质量 总乘、总砷、总铅的测定 原子 荧光法 第2部分: 土壤中总砷的测定 GB/T 22105.2-2008	AFS-8520 原子荧光光度 计	0.01mg/kg
六价铬	土壤和沉积物 六价格的测定 碱溶液提取 -火焰原子吸收分光光度法 HJ 1082-2019	TAS-990F 原子吸收分光 光度计	0.5mg/kg
苯胺	- A-X-N	18	0.01mg/kg
2-氟苯酚		4.0	0.06mg/kg
硝基苯	2.5		0.09mg/kg
掘	100		0.09mg/kg
苯并 (a) 蒽	N/A		0.1mg/kg
塩	土壤和沉积物 半挥发性有机物的测定 气 相色谱-质谱法 HJ 834-2017	8860-5977B 气相色谱质 谱联用仪	0.1mg/kg
苯并 (b) 荧蒽			0.2mg/kg
菜井(k) 荧葱	NY No		0.1mg/kg
笨井 (a) 芘		507	0.1mg/kg
茚并 (1,2,3-cd) 芘	5 17	1×2X	0.1mg/kg
二苯并 (a,h) 蔥	3	2	0.1mg/kg

467

第 33 页 共 34 页

44			

检测项目	分析方法	分析仪器	检出限
氯甲烷			1.0µg/kg
氧乙烯			1.0µg/kg
1,1-二氯乙烯			1.0µg/kg
二氯甲烷			1.5µg/kg
反式-1,2-二氯乙烯			1.4µg/kg
1,1-二氯乙烷			1.2µg/kg
顺式-1,2-二氯乙烯			1.3µg/kg
氯仿			1.1µg/kg
1,1,1-三氯乙烷			1.3µg/kg
四氯化碳			1.3µg/kg
1,2-二氯乙烷			1.3µg/kg
苯			1.9µg/kg
三氯乙烯			1.2µg/kg
1,2-二氯丙烷	土壤和沉积物 挥发性有机物的测定 吹扫 捕集/气相色谱-质谱法 HJ 605-2011	8890-5977B 气相色谱质 谱联用仪	1.1µg/kg
甲苯	more the direction to our total	NINATURE	1.3µg/kg
1,1,2-三氯乙烷	E		1.2µg/kg
四氮乙烯			1.4µg/kg
氯苯		ĺ	1.2μg/kg
1,1,1,2-四氯乙烷			1.2µg/kg
乙苯			1.2µg/kg
何,对-二甲苯			1.2µg/kg
邻-二甲苯			1.2µg/kg
苯乙烯			1.1µg/kg
1,1,2,2-四氯乙烷			1.2µg/kg
1,2,3-三氯丙烷			1.2µg/kg
1,4-二氯苯			1.5µg/kg
1,2-二氨苯			1.5µg/kg
钳	《危险废物鉴别标准 泛出毒性鉴别》GB 5085,3-2007 附录 D 金属元素的测定 火 焰原子吸收光谱法	TAS-990F 原子吸收分光 光度计	0.8mg/L
報	《危险废物鉴别标准 浸出毒性鉴别》GB 5085.3-2007 附录 C 金属元素的测定 石 墨炉原子吸收光谱法	AA-6880F/AAC 原子吸 收分光光度计	0.2μg/L

-报告结束-

第 34 页 共 34 页